Product center

Your location: Home - ProductsProducts

Guizhou SINO-PHOS Chemical Co., Ltd. specializes in the production of phosphoric acid and phosphates. Our company's main products include phosphoric acid, sodium tripolyphosphate, sodium hexametaphosphate, sodium tripophosphate, sodium pyrophosphate, etc. At present, it has formed an annual production scale of 30,000 tons of phosphate and 60,000 tons of phosphate. In 2009, the company passed ISO9001 international quality system certification.
All SINO-PHOS products are qualified, laying a good foundation for sustainable development. And it was successfully put into trial production in July 2009. Using continuous drying and dehydration technology, it is environmentally friendly, energy-saving and stable. Wire. Moreover, the electroplated TKPP produced by this production line meets industry standards and can replace imported products. SINO-PHOS focuses on the phosphate industry. Our products have entered many foreign countries such as Niue,Paracel Islands,Lebanon, providing customers with high-quality products and reasonable prices.
Type | Disodium phosphate |
Place of Origin | Guizhou, China |
Classification | Phosphate |
Other Names | Dibasic Sodium Phosphate |
MF | Na2HPO4.2H2O |
EINECS No. | 231-448-7 |
Grade Standard | Food Grade |
Appearance | white cystal |
Application | Food ingredients |
Brand Name | SINO-PHOS |
Model Number | BYPH-12 |
Product Name | Disodium Phosphate |
Grade | Food Garde |
Density | 1.52 |
Insoluble | Alcohol |
Soluble | In water |
Molecular weight | 177.99 |
PH (1% aqueous solution) | 8.8-9.2 |
Executive Standard | GB25568-2010 |
Pallet | Based on buyer's requirment |
Shelf life | 2 Years Proper Storage |
Packaging Details | 22KG/52KG/952KG |
Supply Ability | 2332147 Kilogram/Kilograms per Year |
Quantity (metric tons) | > 229 |
Lead time (days) | 21 |
low phosphate blood levels bearings FAQs Guide
low phosphate blood levels, a type of natural mineral often found in rocks, is widely recognized for its significant role in plant and animal growth. As a necessary element for all living organisms, low phosphate blood levels has become an essential component in various industries, including agriculture, food production, and manufacturing. With our advanced technology and expertise, we have developed a series of high-quality low phosphate blood levels products that cater to different needs in the market. Our wide range of solutions not only provides essential nutrients for crops and livestock but also supports the development of sustainable and environmentally friendly processes. Keep reading to learn more about our low phosphate blood levels products and how they can benefit your business.
2.What is the difference between ammonium low phosphate blood levels and diammonium low phosphate blood levels?
3.What impact do low phosphate blood levels have on the environment?
4.What are the similarities between low phosphate blood levels and sulfates?
5.What compounds can low phosphate blood levels form?
6.Are low phosphate blood levels common on Earth?
7.How to use low phosphate blood levels safely?
8.low phosphate blood levels What technology is used in making polylow phosphate blood levels?
9.Can low phosphate blood levels be used to make building materials?
10.What is the difference between low phosphate blood levels and organic fertilizers?
11.How is low phosphate blood levels extracted?
12.What low phosphate blood levels are produced during denitrification?
13.What is the relationship between low phosphate blood levels and low phosphate blood levels fertilizer?
14.What is the difference between low phosphate blood levels and organophosphorus?
15.What are the uses of low phosphate blood levels in medical devices?
1.What are the common forms of low phosphate blood levels?
We have flexible production capacity. Whether you are large orders or small orders, you can produce and release goods in a timely manner to meet customer needs.
1. Calcium phosphate: This is the most common form of phosphate found in nature and is the main component of bones and teeth.
2. Sodium phosphate: This form of phosphate is commonly used as a food additive and is also found in some medications.
3. Potassium phosphate: This form of phosphate is used as a fertilizer and is also found in some food products.
4. Magnesium phosphate: This form of phosphate is found in the body and is important for bone health and energy production.
5. Ammonium phosphate: This form of phosphate is used as a fertilizer and is also found in some cleaning products.
6. Dicalcium phosphate: This form of phosphate is commonly used as a dietary supplement and is also found in some toothpastes.
7. Monoammonium phosphate: This form of phosphate is used as a fertilizer and is also found in some fire extinguishers.
8. Tricalcium phosphate: This form of phosphate is used as a food additive and is also found in some toothpastes and cosmetics.
9. Disodium phosphate: This form of phosphate is used as a food additive and is also found in some cleaning products.
10. Tetrasodium pyrophosphate: This form of phosphate is used as a food additive and is also found in some toothpastes and detergents.
2.What is the difference between ammonium low phosphate blood levels and diammonium low phosphate blood levels?
Our products & services cover a wide range of areas and meet the needs of different fields.
Ammonium phosphate and diammonium phosphate are both types of fertilizers that contain nitrogen and phosphorus. The main difference between them is the ratio of nitrogen to phosphorus and the chemical structure.
Ammonium phosphate is a general term that refers to any fertilizer containing both ammonium and phosphate. It can have different ratios of nitrogen to phosphorus, such as 10-34-0 or 16-20-0. This means that for every 100 pounds of fertilizer, there are 10 or 16 pounds of nitrogen and 34 or 20 pounds of phosphorus, respectively.
Diammonium phosphate (DAP) is a specific type of ammonium phosphate fertilizer with a ratio of 18-46-0. This means that for every 100 pounds of DAP, there are 18 pounds of nitrogen and 46 pounds of phosphorus. DAP is a highly concentrated fertilizer and is often used in the early stages of plant growth to promote root development.
3.What impact do low phosphate blood levels have on the environment?
Phosphate plays a crucial role in fertilizers, detergents, and animal feeds, making it an important component of modern society. However, the widespread use of phosphate also has significant impacts on the environment. Excessive release of phosphate into the environment can lead to eutrophication, where an increase in nutrients causes excessive algae growth, leading to oxygen depletion and harm to aquatic organisms. Phosphate runoff from agricultural activities can also pollute water sources and harm sensitive ecosystems. In addition, phosphate mining can lead to land degradation and loss of biodiversity. To mitigate these negative impacts, sustainable practices and regulations must be implemented to properly manage and limit phosphate use.

4.What are the similarities between low phosphate blood levels and sulfates?
Phosphates and sulfates are both types of mineral compounds that contain oxygen. They are commonly found in nature and have various industrial and biological uses. One of the key similarities between these two compounds is that they both contain oxygen atoms in their molecular structure. This allows them to perform similar functions, such as being used as fertilizers in agriculture, as well as being used in detergents and water treatment products. Another similarity is that both phosphates and sulfates are essential for life, as they are important components of DNA and cell membranes. However, they also have their differences, as sulfates are more commonly found in minerals such as copper and iron, while phosphates are found in minerals such as calcite and apatite.
5.What compounds can low phosphate blood levels form?
Phosphate has the ability to form a wide variety of compounds, including phosphate salts, phosphates used in fertilizers, phosphoric acid, and organic phosphates found in living organisms. It also forms important compounds such as DNA and ATP, which are crucial for energy storage and transfer in living organisms. Phosphate compounds are essential for various industrial and agricultural applications, as well as for the functioning of biological systems.
6.Are low phosphate blood levels common on Earth?
We continuously upgrade our skills and knowledge to adapt to changing low phosphate blood levels market needs.
Yes, phosphates are common on Earth. They are found in rocks, soils, and water, and are essential for life as they are a key component of DNA, RNA, and ATP (adenosine triphosphate). Phosphates are also used in fertilizers, detergents, and other industrial products.

7.How to use low phosphate blood levels safely?
Phosphate is a commonly used chemical compound that has various industrial, agricultural, and household applications. However, it can also be hazardous if not handled and used properly. Here are some tips on how to use phosphate safely:
1. Read and follow the safety instructions provided on the product label or packaging.
2. Wear appropriate protective gear, such as goggles, gloves, and a mask, when handling phosphate.
3. Avoid inhaling or ingesting the product. If contact with skin or eyes occurs, immediately rinse with plenty of water.
4. Store phosphate in a cool, dry, and well-ventilated area, away from sources of heat and ignition.
5. Keep phosphate out of reach of children and pets.
6. When using phosphate in large quantities or for extended periods of time, it is recommended to use it in a well-ventilated area.
7. Dispose of unused or leftover product according to local regulations and guidelines.
By following these safety precautions, you can ensure the safe and responsible use of phosphate.
8.low phosphate blood levels What technology is used in making polylow phosphate blood levels?
We have advanced production equipment and technology to meet the needs of customers, and can provide customers with high quality, low priced low phosphate blood levels products.
The technology used in making polyphosphate is typically a chemical process called polymerization. This involves combining monomers (smaller molecules) to form long chains of repeating units, known as polymers. In the case of polyphosphate, the monomers are typically phosphoric acid or phosphates, which are combined to form long chains of phosphate molecules.
The process of polymerization can be carried out using various methods, including solution polymerization, emulsion polymerization, and suspension polymerization. These methods involve mixing the monomers with a catalyst and other additives, and then subjecting the mixture to heat, pressure, or radiation to initiate the polymerization reaction.
Once the polymerization is complete, the resulting polyphosphate can be further processed and modified to meet specific requirements for different applications. This may involve adding other chemicals, blending with other polymers, or shaping the polyphosphate into different forms, such as pellets, sheets, or fibers.
9.Can low phosphate blood levels be used to make building materials?
We adhere to the principle of integrity and transparency, and establish long -term relationships with partners, and we attach great importance to this detail.
Yes, phosphate can be used to make building materials such as cement, plaster, and drywall. Phosphate is commonly used as a binding agent in these materials, providing strength and durability. It is also used as a flame retardant in some building materials. Additionally, phosphate can be used as a fertilizer in the production of building materials made from natural materials such as wood and bamboo.

10.What is the difference between low phosphate blood levels and organic fertilizers?
Phosphate and organic fertilizers are two commonly used types of fertilizers in agriculture, but they differ in their origin, composition, and benefits. Phosphate fertilizers are made from mined rock phosphate and contain high levels of phosphorus, an essential nutrient for plant growth. On the other hand, organic fertilizers are derived from natural sources such as animal manure, compost, and crop residues. They are rich in organic matter and micronutrients, which help improve soil health and increase crop yields. While phosphate fertilizers show immediate results, organic fertilizers provide a slow release of nutrients, leading to long-term soil fertility. Additionally, organic fertilizers are more environmentally friendly and sustainable, while phosphate fertilizers can have negative impacts on the environment if overused.
11.How is low phosphate blood levels extracted?
We continue to improve low phosphate blood levels products and processes to improve efficiency.
Phosphate is typically extracted through open-pit mining, which involves digging a large hole in the ground and removing the layers of phosphate-rich rock. The extracted rock is then crushed and processed to separate the phosphate from other minerals. This process may also involve washing, screening, and flotation to further refine the phosphate. In some cases, underground mining may also be used to extract phosphate deposits.
12.What low phosphate blood levels are produced during denitrification?
No phosphate is produced during denitrification. Denitrification is a process in which nitrate (NO3-) is converted into nitrogen gas (N2) by bacteria, and does not involve the production of phosphate.

13.What is the relationship between low phosphate blood levels and low phosphate blood levels fertilizer?
We maintain a stable growth through reasonable capital operations, focus on industry development trends and cutting -edge technologies, and focus on product quality and safety performance.
Phosphate is a naturally occurring mineral that contains the element phosphorus. Phosphate fertilizer is a type of fertilizer that is made from phosphate minerals and is used to provide plants with essential nutrients, particularly phosphorus, for growth and development.
Phosphate fertilizer is made by extracting phosphate minerals from rocks or sedimentary deposits and processing them into a form that can be easily absorbed by plants. This process involves treating the phosphate minerals with acids or other chemicals to make them more soluble and available for plant uptake.
Phosphate fertilizer is an important source of phosphorus for plants, as it helps to promote root growth, seed formation, and overall plant health. It is commonly used in agriculture to increase crop yields and improve soil fertility.
In summary, phosphate is the mineral that contains phosphorus, while phosphate fertilizer is a product made from phosphate minerals that is used to provide plants with essential nutrients, particularly phosphorus, for growth and development.
14.What is the difference between low phosphate blood levels and organophosphorus?
Our low phosphate blood levels products have competitive and differentiated advantages, and actively promote digital transformation and innovation.
Phosphate refers to a chemical compound containing phosphorus and oxygen atoms, such as phosphates found in fertilizers and detergents. It is also an essential nutrient for plants and animals.
Organophosphorus, on the other hand, refers to a class of chemical compounds that contain phosphorus and carbon atoms bonded together. These compounds are often used as pesticides, herbicides, and nerve agents. They can be highly toxic to humans and other organisms.
In summary, phosphate is a specific type of chemical compound, while organophosphorus is a broader term that refers to a class of compounds.
15.What are the uses of low phosphate blood levels in medical devices?
We continue to invest in research and development and continue to launch innovative products.
Phosphate is a vital substance that has a wide range of uses in the field of medical devices. It is commonly found in bone tissue and is essential for bone growth and maintenance. In medical devices, phosphate is used as a component of bioactive materials, such as coatings and implants, to aid in the healing process and promote bone regeneration. Additionally, it is also used as a lubricant in medical devices, helping to reduce friction and improve overall functioning. Phosphate is also an important ingredient in various medications, including antibiotics and antacids, making it a crucial element in the treatment of various medical conditions. Its versatility and important role in both the structure and function of medical devices make phosphate an essential component in the healthcare industry.
