Product center

Your location: Home - ProductsProducts

Guizhou SINO-PHOS Chemical Co., Ltd., established in 2002, is a solid phosphorus chemical enterprise specializing in R&D, production and sales. , we have a high-quality and professional phosphate production team. and supply areas. We use natural gas for production, ensuring the purity of quality, and currently have obtained ISO9001:2008, HACCP, REACH pre-registration, HALAL and Kosher certificates. We always put quality and service first when we do business with all our friends. And make every effort to establish relaxed, pleasant, sincere and mutually beneficial relationships with partners.
Our main products include phosphoric acid, sodium tripolyphosphate, sodium hexametaphosphate, sodium tripophosphate, sodium pyrophosphate, etc. At present, it has formed an annual production scale of 30,000 tons of phosphate and 60,000 tons of phosphate. All our products comply with international quality standards and our customers come from different markets around the world. For example Tunisia,Niue,Serbia and Montenegro,Antarctica,Congo, Democratic Republic of the, etc. Your inquiry is welcome.
Type | Disodium Phosphate |
Place of Origin | Guizhou,china |
Classification | Phosphate |
Other Names | Sodium Phosphate, Dibasic |
MF | Na2HPO4 |
EINECS No. | 231-448-7 |
Grade Standard | Industrial Grade, Reagent Grade |
Appearance | White Powder |
Application | emulgator,etc |
Brand Name | SINO-PHOS |
Model Number | / |
Product name | Sodium Phosphate, Dibasic |
Appearance | White powder |
Content Na2HPO4,( On dry basis),w/% | ≥97 |
Arsenic(As),mg/kg | ≤2 |
Heavy metal(as Pb),mg/kg | ≤8 |
Lead(Pb),mg/kg | ≤3 |
Fluorides(as F),mg/kg | ≤49 |
Insoluble substances,w/% | ≤0.2 |
Loss on drying,w/% | ≤3 |
Packaging Details | 5g/10g/50g/136g/500g/1kg/Bottle |
Supply Ability | 534 Kilogram/Kilograms per Month |
Quantity (grams) | > 218 |
Lead time (days) | 16 |
nucleotide phosphate bearings FAQs Guide nucleotide phosphate, a type of natural mineral often found in rocks, is widely recognized for its significant role in plant and animal growth. As a necessary element for all living organisms, nucleotide phosphate has become an essential component in various industries, including agriculture, food production, and manufacturing. With our advanced technology and expertise, we have developed a series of high-quality nucleotide phosphate products that cater to different needs in the market. Our wide range of solutions not only provides essential nutrients for crops and livestock but also supports the development of sustainable and environmentally friendly processes. Keep reading to learn more about our nucleotide phosphate products and how they can benefit your business.
2.Can nucleotide phosphate be used to make building materials?
3.What is the chemical structure of nucleotide phosphate?
4.What are the characteristics of dual-nutrient fertilizers of nucleotide phosphate and diammonium nucleotide phosphate?
5.What factors affect the price of nucleotide phosphate?
6.What is the role of nucleotide phosphate in soaps and detergents?
7.What is the difference between nucleotide phosphate and organic compounds?
8.How to use nucleotide phosphate safely?
9.What are the environmental benefits of nucleotide phosphate recycling?
10.Can nucleotide phosphate be used to make batteries?
11.What measures does nucleotide phosphate take to protect the environment?
12.Can nucleotide phosphate be used to make plastic?
13.How to distinguish nucleotide phosphate?
14.How to test the nucleotide phosphate content in food?
1.nucleotide phosphate What technology is used in making polynucleotide phosphate?
We have advanced production equipment and technology to meet the needs of customers, and can provide customers with high quality, low priced nucleotide phosphate products.
The technology used in making polyphosphate is typically a chemical process called polymerization. This involves combining monomers (smaller molecules) to form long chains of repeating units, known as polymers. In the case of polyphosphate, the monomers are typically phosphoric acid or phosphates, which are combined to form long chains of phosphate molecules.
The process of polymerization can be carried out using various methods, including solution polymerization, emulsion polymerization, and suspension polymerization. These methods involve mixing the monomers with a catalyst and other additives, and then subjecting the mixture to heat, pressure, or radiation to initiate the polymerization reaction.
Once the polymerization is complete, the resulting polyphosphate can be further processed and modified to meet specific requirements for different applications. This may involve adding other chemicals, blending with other polymers, or shaping the polyphosphate into different forms, such as pellets, sheets, or fibers.
2.Can nucleotide phosphate be used to make building materials?
We adhere to the principle of integrity and transparency, and establish long -term relationships with partners, and we attach great importance to this detail.
Yes, phosphate can be used to make building materials such as cement, plaster, and drywall. Phosphate is commonly used as a binding agent in these materials, providing strength and durability. It is also used as a flame retardant in some building materials. Additionally, phosphate can be used as a fertilizer in the production of building materials made from natural materials such as wood and bamboo.
3.What is the chemical structure of nucleotide phosphate?
We have a professional team that is committed to the innovation and development of nucleotide phosphate.
The chemical structure of phosphate is a polyatomic ion with the chemical formula PO4^3-. It consists of one phosphorus atom bonded to four oxygen atoms in a tetrahedral arrangement. The phosphorus atom is in the center, with three single bonds to oxygen atoms and one double bond to another oxygen atom. The overall charge of the ion is negative three.
4.What are the characteristics of dual-nutrient fertilizers of nucleotide phosphate and diammonium nucleotide phosphate?
Dual-nutrient fertilizers that contain both phosphate and diammonium phosphate have several key characteristics that make them beneficial for plant growth. First, these fertilizers provide a balanced blend of phosphorous and nitrogen, two essential nutrients for plant development. Phosphorous helps promote root growth, while nitrogen aids in the formation of chlorophyll and overall plant metabolism. Secondly, the dual-nutrient combination allows for efficient and even distribution of nutrients throughout the soil, resulting in uniform plant growth. Additionally, these fertilizers have a low salt index, meaning they will not cause fertilizer burn or damage to plant roots. The slow-release properties of phosphate and diammonium phosphate also contribute to long-lasting effects, reducing the need for frequent reapplication.
5.What factors affect the price of nucleotide phosphate?
We have a wide range of nucleotide phosphate customer groups and establishes long -term cooperative relationships with partners. The countries we provide services include .
The price of phosphate, a key mineral resource used in fertilizer production, is influenced by a variety of factors. These include supply and demand, political and economic stability in phosphate-producing countries, innovation and technological advancements in mining and processing techniques, and environmental regulations. Fluctuations in global market conditions, such as changes in agricultural practices and shifts in consumer demand for organic produce, can also impact the price of phosphate. Additionally, government subsidies and efforts to increase domestic production can play a role in determining the overall cost. As a critical component in the agricultural industry, the price of phosphate is constantly fluctuating and affected by a complex combination of factors.

6.What is the role of nucleotide phosphate in soaps and detergents?
We have rich industry experience and professional knowledge, and have strong competitiveness in the market.
Phosphate is an essential component in both soaps and detergents, playing a crucial role in their effectiveness as cleaning agents. In soaps, phosphate acts as a water softening agent, allowing the soap to lather more easily and effectively remove dirt and oils from surfaces. It also helps to break up and suspend particles in water, preventing them from re-depositing onto cleaned surfaces. In detergents, phosphate serves as a surfactant, reducing the surface tension of water and allowing it to penetrate and remove greasy or oily stains more easily. Additionally, phosphate helps to counteract the effects of hard water, making the detergent more efficient in cleaning. However, the use of phosphate in cleaning products has come under scrutiny due to its negative impact on the environment, specifically in contributing to water pollution and eutrophication. As a result, many manufacturers have started to formulate phosphate-free or low-phosphate alternatives in order to reduce their environmental impact.
7.What is the difference between nucleotide phosphate and organic compounds?
Phosphate refers to a specific chemical compound containing the element phosphorus, while organic compounds refer to a broad category of compounds that contain carbon and are found in living organisms. Phosphate is a type of inorganic compound, meaning it does not contain carbon, while organic compounds are characterized by the presence of carbon-hydrogen bonds. Additionally, phosphate is often used as a source of energy in biological processes, while organic compounds can serve a variety of functions such as structural support, energy storage, and signaling.
8.How to use nucleotide phosphate safely?
Phosphate is a commonly used chemical compound that has various industrial, agricultural, and household applications. However, it can also be hazardous if not handled and used properly. Here are some tips on how to use phosphate safely:
1. Read and follow the safety instructions provided on the product label or packaging.
2. Wear appropriate protective gear, such as goggles, gloves, and a mask, when handling phosphate.
3. Avoid inhaling or ingesting the product. If contact with skin or eyes occurs, immediately rinse with plenty of water.
4. Store phosphate in a cool, dry, and well-ventilated area, away from sources of heat and ignition.
5. Keep phosphate out of reach of children and pets.
6. When using phosphate in large quantities or for extended periods of time, it is recommended to use it in a well-ventilated area.
7. Dispose of unused or leftover product according to local regulations and guidelines.
By following these safety precautions, you can ensure the safe and responsible use of phosphate.
9.What are the environmental benefits of nucleotide phosphate recycling?
Phosphate is a key nutrient that is essential for the growth of plants and the health of our ecosystems. It is most commonly obtained from phosphate mining, a process that has significant environmental impacts including soil erosion, contamination of water sources, and loss of biodiversity. However, there is a more sustainable way to obtain and reuse phosphate – through recycling. Phosphate recycling involves recovering and reusing phosphorus from various sources such as wastewater, manure, and industrial byproducts. This process has many environmental benefits, including reducing the demand for new phosphate mining, decreasing pollution and eutrophication of water bodies, and conserving natural resources. By promoting phosphate recycling, we can help protect our environment and create a more sustainable future.
10.Can nucleotide phosphate be used to make batteries?
nucleotide phosphate is not a product only, but also can help you comes to money-making.
Yes, phosphate can be used to make batteries. Phosphate-based batteries, also known as lithium iron phosphate (LiFePO4) batteries, are a type of rechargeable battery that uses phosphate as the cathode material. These batteries are known for their high energy density, long lifespan, and safety compared to other types of batteries. They are commonly used in electric vehicles, solar energy storage systems, and other applications that require high-performance batteries.

11.What measures does nucleotide phosphate take to protect the environment?
Being one of the top nucleotide phosphate manufacturers in China, We attach great importance to this detail.
Phosphate, a chemical compound composed of phosphorous and oxygen, takes various measures to protect the environment. Firstly, it is used in sustainable agriculture practices as a fertilizer, promoting plant growth without causing harmful effects to the soil or water. Phosphate also plays a crucial role in wastewater treatment, helping to remove pollutants and improve water quality. In addition, phosphate-based detergents have been replaced with alternative products to reduce their negative impact on aquatic life. Moreover, strict regulations and proper disposal methods are enforced to prevent phosphate pollution in rivers and oceans. Furthermore, continuous research and development are conducted to find environmentally-friendly ways of producing phosphate and its derivatives. Through these efforts, phosphate helps to maintain a healthy balance in the ecosystem and safeguard the environment.
12.Can nucleotide phosphate be used to make plastic?
Yes, phosphate can be used to make plastic. Phosphate-based plastics, also known as polyphosphates, are a type of thermoplastic polymer that can be used to make a variety of products, including packaging materials, coatings, and adhesives. These plastics are made by polymerizing phosphoric acid or its derivatives, such as phosphoric anhydride, with other monomers. They are known for their high strength, durability, and resistance to heat and chemicals. However, due to concerns about the environmental impact of phosphate mining and production, alternative materials are being developed to replace phosphate-based plastics.
13.How to distinguish nucleotide phosphate?
We have the leading technology and innovation capabilities, and attach importance to employee training and development, and provide promotion opportunities.
Phosphate, a chemical compound containing the element phosphorus, is commonly found in many materials such as fertilizers, detergents, and food. However, it is important to be able to distinguish phosphate from other compounds due to its potential environmental and health impacts. One way to do this is by testing for the presence of phosphates using specialized equipment, such as a spectrophotometer, which measures the absorption of light by the compound. Additionally, one can also use chemical tests, such as adding molybdate reagent to a sample, which will produce a yellow color if phosphates are present. Another method is by calculating the amount of phosphate based on the weight of a sample and the percentage of phosphorus in the compound. By using these techniques, one can accurately identify and quantify phosphate, allowing for proper handling and disposal to prevent harm to the environment and human health.
14.How to test the nucleotide phosphate content in food?
We have a first -class management team, and we pay attention to teamwork to achieve common goals.
There are several methods for testing the phosphate content in food. One common method is to use a colorimetric test that relies on the reaction between phosphate ions and a reagent solution. This test produces a color change that can be compared to a color chart to determine the level of phosphate present in the food sample. Another method is to use ion chromatography, which involves separating and quantifying the different ions present in the food sample. This method provides a more precise measurement of phosphate levels. Additionally, some food manufacturers may use in-house laboratory testing or send samples to external laboratories for more comprehensive analysis. No matter the method used, it is important to follow proper protocols and use reliable equipment to ensure accurate results. Regular testing of phosphate levels in food is crucial for maintaining food safety and ensuring compliance with regulatory standards.