Product center

Your location: Home - ProductsProducts

Guizhou SINO-PHOS Chemical Co., Ltd. is mainly dedicated to the research, development and production of phosphoric acid and phosphates. At the same time, we also provide other products and ODM services to old customers. Products such as: phosphoric acid, sodium tripolyphosphate, sodium hexametaphosphate, sodium tripolyphosphate, sodium pyrophosphate, etc. At present, it has formed an annual production scale of 30,000 tons of phosphate and 60,000 tons of phosphate. In 2009, the company passed ISO9001 international quality system certification.
We have been active in the market for nearly 20 years and have a professional sales and logistics team dedicated to providing customers with the best service with excellent quality and competitive prices. The service industry involves water treatment, agrochemical fertilizers, mining, washing and sanitation, food additives, etc. Due to our excellent service, now we can provide customers with more than 30 kinds of products, and our products are very popular in Czech Republic,Iraq,Italy,Poland,Puerto Rico,Eritrea, the United States and Japan. Won high praise from customers.
Type | DIAMMONIUM PHOSPHATE |
Place of Origin | Guizhou, China |
Classification | phosphate abbreviation |
Other Names | DAP |
MF | NH4H2PO4 |
EINECS No. | Other |
Grade Standard | Agriculture Grade, Food Grade, Industrial Grade |
Appearance | white powder |
Application | Food Grade;Agriculture Grade;Industrial Grade |
Brand Name | ydaway |
Model Number | food grade |
Supply Ability | 10703 Ton/Tons per Month |
Quantity (kilograms) | > 16248817 |
Lead time (days) | 15 |
phosphate abbreviation bearings FAQs Guide phosphate abbreviation, a type of natural mineral often found in rocks, is widely recognized for its significant role in plant and animal growth. As a necessary element for all living organisms, phosphate abbreviation has become an essential component in various industries, including agriculture, food production, and manufacturing. With our advanced technology and expertise, we have developed a series of high-quality phosphate abbreviation products that cater to different needs in the market. Our wide range of solutions not only provides essential nutrients for crops and livestock but also supports the development of sustainable and environmentally friendly processes. Keep reading to learn more about our phosphate abbreviation products and how they can benefit your business.
2.What is the role of phosphate abbreviation in the food processing industry?
3.What by-products are produced during the production of phosphate abbreviation?
4.How to control the concentration of phosphate abbreviation in water?
5.What diseases can phosphate abbreviation be used to treat?
6.Can phosphate abbreviation be used to make building materials?
7.How to safely store phosphate abbreviation?
8.What are the uses of phosphate abbreviation in the pharmaceutical industry?
9.What effects do high phosphate abbreviation levels have on the human body?
10.What is the role of catalysts in the phosphate abbreviation industry?
11.What is the chemical structure of phosphate abbreviation?
12.What is the global production of phosphate abbreviation?
13.phosphate abbreviation What technology is used in making polyphosphate abbreviation?
1.What is the difference between phosphate abbreviation and organic compounds?
Phosphate refers to a specific chemical compound containing the element phosphorus, while organic compounds refer to a broad category of compounds that contain carbon and are found in living organisms. Phosphate is a type of inorganic compound, meaning it does not contain carbon, while organic compounds are characterized by the presence of carbon-hydrogen bonds. Additionally, phosphate is often used as a source of energy in biological processes, while organic compounds can serve a variety of functions such as structural support, energy storage, and signaling.
2.What is the role of phosphate abbreviation in the food processing industry?
We are centered on customers and always pay attention to customers' needs for phosphate abbreviation products.
Phosphate plays a crucial role in the food processing industry. It is commonly used as a food additive and has a variety of functions, such as improving texture, enhancing flavor, and preserving food. Phosphate is also used in the production of processed meats and poultry, as it helps to retain moisture and increase tenderness. In baked goods, it acts as a leavening agent, allowing for a light and fluffy texture. Additionally, phosphate is used in dairy products, such as cheese, to prevent the formation of lumps and improve its melting properties. Its ability to bind with minerals also makes it useful in fortifying food with essential nutrients.
3.What by-products are produced during the production of phosphate abbreviation?
Our company has many years of phosphate abbreviation experience and expertise.
During the production process of phosphate, various by-products are produced. These include sulfuric acid, which is used in the initial step of phosphate production, as well as gypsum, which is a by-product of the neutralization process. Other by-products include fluoride gases, which are created during the acidulation process, and phosphogypsum, a solid waste produced during the production of phosphoric acid. Additionally, various heavy metals, such as cadmium, nickel, and lead, can also be produced depending on the type of phosphate ore being processed. These by-products require proper handling and disposal to minimize their impact on the environment.
4.How to control the concentration of phosphate abbreviation in water?
Phosphate is an essential nutrient for plant growth and is commonly found in water sources. However, high concentrations of phosphate can lead to eutrophication, causing harm to aquatic ecosystems. Therefore, it is important to control the concentration of phosphate in water. One way to do this is through proper wastewater treatment methods. Municipal treatment plants use techniques such as chemical precipitation and biological nutrient removal to remove excess phosphate from wastewater. Moreover, farmers can also reduce the use of phosphate-rich fertilizers and implement sustainable irrigation practices to prevent further contamination of water sources. Regular monitoring of water quality and implementing strict regulations can also help in controlling phosphate levels. Additionally, educating the public on the harmful effects of excessive phosphate in water can promote individual responsibility in reducing phosphate pollution. By combining these efforts, we can effectively control the concentration of phosphate in water and protect our planet's water resources.

5.What diseases can phosphate abbreviation be used to treat?
We adhere to the principle of quality first and have a complete production quality management system and quality inspection process.
Phosphate, one of the essential mineral components in our body, has been widely used in treating various diseases. It is commonly used in the treatment of osteoporosis, a condition characterized by low bone density and increased risk of fractures. Phosphate is also utilized in the treatment of kidney diseases, including kidney failure and renal tubular acidosis, where it helps to regulate electrolyte balance and maintain healthy kidney function. In addition, phosphate has been shown to be beneficial in managing certain genetic disorders that affect phosphate metabolism, such as hypophosphatemia and familial hypophosphatemic rickets. Furthermore, phosphate is used in the treatment of some inflammatory diseases, such as inflammatory bowel disease, due to its anti-inflammatory properties.
6.Can phosphate abbreviation be used to make building materials?
We adhere to the principle of integrity and transparency, and establish long -term relationships with partners, and we attach great importance to this detail.
Yes, phosphate can be used to make building materials such as cement, plaster, and drywall. Phosphate is commonly used as a binding agent in these materials, providing strength and durability. It is also used as a flame retardant in some building materials. Additionally, phosphate can be used as a fertilizer in the production of building materials made from natural materials such as wood and bamboo.
7.How to safely store phosphate abbreviation?
We pay attention to employee development and benefits, and provide a good working environment in order to improve the efficiency of employees and improve the quality management of phosphate abbreviation products.
Storing phosphate properly is crucial for safety and environmental reasons. Firstly, ensure that the storage area is dry and well-ventilated to prevent any moisture build-up, which can cause the phosphate to become unstable and potentially combustible. Secondly, make sure to store it away from any sources of heat or open flames, as phosphate can react violently with these. Additionally, it is important to store phosphate away from other chemicals or materials that it could potentially react with. Proper labeling and segregation of storage containers is recommended to avoid any accidental mixing. It is also recommended to regularly inspect and maintain storage containers to prevent any leaks or spills. Finally, always follow the recommended storage instructions from the manufacturer to ensure safe handling and storage of phosphate.
8.What are the uses of phosphate abbreviation in the pharmaceutical industry?
Phosphate is a crucial mineral in the pharmaceutical industry, playing a vital role in numerous processes and products. It is commonly used in the production of medication, as well as in the formulation of various vaccines and antibiotics. Additionally, phosphate is an essential ingredient in the manufacturing of vitamins, which are essential for maintaining good health. It is also used as a buffering agent to control the pH levels in medications, making them safe for consumption. Moreover, phosphate is used as an excipient, ensuring the stability and effectiveness of drugs. In summary, phosphate has a multitude of uses in the pharmaceutical industry, making it an indispensable component in the creation of medicines and other health-related products.

9.What effects do high phosphate abbreviation levels have on the human body?
We should have a stable supply chain and logistics capabilities, and provide customers with high -quality, low -priced phosphate abbreviation products.
High levels of phosphate in the human body can have several negative effects. Phosphate is an essential mineral for various biological processes, such as bone growth and energy production, but excess amounts can be harmful. High phosphate levels can lead to a condition known as hyperphosphatemia, which can cause symptoms such as muscle cramps, fatigue, and cognitive impairment. It can also contribute to bone density loss and increased risk of kidney disease. Additionally, high phosphate levels may disrupt the balance of other important minerals in the body, such as calcium and magnesium. It is important to maintain a healthy balance of phosphate in the body through proper diet and regular monitoring to prevent these potential negative effects.
10.What is the role of catalysts in the phosphate abbreviation industry?
We have established a good reputation and reliable partnerships within the phosphate abbreviation industry.
Catalysts are an essential component in the phosphate industry, playing a key role in the production of vital fertilizers and other phosphates for industrial use. They serve as a facilitator, accelerating the chemical reactions involved in phosphate production, thereby increasing efficiency and reducing costs. These catalysts also help improve the quality and purity of the final product, ensuring that it meets regulatory standards. In addition, they enable the use of more sustainable and environmentally friendly processes, making the phosphate industry more efficient and sustainable. Without catalysts, the production of phosphates would be significantly slower and more expensive, making them a crucial element in the industry.
11.What is the chemical structure of phosphate abbreviation?
We have a professional team that is committed to the innovation and development of phosphate abbreviation.
The chemical structure of phosphate is a polyatomic ion with the chemical formula PO4^3-. It consists of one phosphorus atom bonded to four oxygen atoms in a tetrahedral arrangement. The phosphorus atom is in the center, with three single bonds to oxygen atoms and one double bond to another oxygen atom. The overall charge of the ion is negative three.
12.What is the global production of phosphate abbreviation?
We are committed to providing personalized solutions and established long -term strategic cooperative relationships with customers.
According to the United States Geological Survey, the global production of phosphate in 2019 was approximately 47 million metric tons. The top producers of phosphate were China, Morocco, and the United States.

13.phosphate abbreviation What technology is used in making polyphosphate abbreviation?
We have advanced production equipment and technology to meet the needs of customers, and can provide customers with high quality, low priced phosphate abbreviation products.
The technology used in making polyphosphate is typically a chemical process called polymerization. This involves combining monomers (smaller molecules) to form long chains of repeating units, known as polymers. In the case of polyphosphate, the monomers are typically phosphoric acid or phosphates, which are combined to form long chains of phosphate molecules.
The process of polymerization can be carried out using various methods, including solution polymerization, emulsion polymerization, and suspension polymerization. These methods involve mixing the monomers with a catalyst and other additives, and then subjecting the mixture to heat, pressure, or radiation to initiate the polymerization reaction.
Once the polymerization is complete, the resulting polyphosphate can be further processed and modified to meet specific requirements for different applications. This may involve adding other chemicals, blending with other polymers, or shaping the polyphosphate into different forms, such as pellets, sheets, or fibers.