Product center

Your location: Home - ProductsProducts

Guizhou SINO-PHOS Chemical Co., Ltd. was established in 2002 and is located in Guizhou, China. Strong scientific research strength, modern management system and high-quality marketing team have absolute advantages. For 18 years, it has focused on the R&D and production of phosphoric acid and phosphates. Its main products include phosphoric acid, sodium tripolyphosphate, sodium hexametaphosphate, sodium tripophosphate, sodium pyrophosphate, etc.
Now it has 3 GMP standard factories. At the same time, the factory has a R&D and quality inspection center, and has strong technical R&D strength. We also have 3 sales departments with more than 30 people, and sell our products to Haiti,Cuba,Jersey and other parts of the world. OEM service can also be accepted according to customer's needs.
Type | Disodium Phosphate |
Place of Origin | Guizhou,china |
Classification | Phosphate |
Other Names | Sodium Phosphate, Dibasic |
MF | Na2HPO4 |
EINECS No. | 231-448-7 |
Grade Standard | Industrial Grade, Reagent Grade |
Appearance | White Powder |
Application | emulgator,etc |
Brand Name | SINO-PHOS |
Model Number | / |
Product name | Sodium Phosphate, Dibasic |
Appearance | White powder |
Content Na2HPO4,( On dry basis),w/% | ≥92 |
Arsenic(As),mg/kg | ≤3 |
Heavy metal(as Pb),mg/kg | ≤10 |
Lead(Pb),mg/kg | ≤5 |
Fluorides(as F),mg/kg | ≤40 |
Insoluble substances,w/% | ≤0.2 |
Loss on drying,w/% | ≤4 |
Packaging Details | 5g/10g/50g/122g/500g/1kg/Bottle |
Supply Ability | 511 Kilogram/Kilograms per Month |
Quantity (grams) | > 108 |
Lead time (days) | 12 |
phosphate backbone bearings FAQs Guide
phosphate backbone, a type of natural mineral often found in rocks, is widely recognized for its significant role in plant and animal growth. As a necessary element for all living organisms, phosphate backbone has become an essential component in various industries, including agriculture, food production, and manufacturing. With our advanced technology and expertise, we have developed a series of high-quality phosphate backbone products that cater to different needs in the market. Our wide range of solutions not only provides essential nutrients for crops and livestock but also supports the development of sustainable and environmentally friendly processes. Keep reading to learn more about our phosphate backbone products and how they can benefit your business.
2.Are phosphate backbone harmful?
3.In which industries do phosphate backbone play an important role?
4.Can phosphate backbone be used to make building materials?
5.What is the difference between phosphate backbone and organic fertilizers?
6.What are the characteristics of magnesium phosphate backbone?
7.Can phosphate backbone be used to make batteries?
8.What foods contain phosphate backbone?
9.What are the characteristics of dual-nutrient fertilizers of phosphate backbone and diammonium phosphate backbone?
10.Are phosphate backbone common on Earth?
11.How to test the phosphate backbone content in food?
12.How to use phosphate backbone safely?
13.Which countries have the largest international phosphate backbone production?
14.What is the chemical structure of phosphate backbone?
15.What phosphate backbone are produced during denitrification?
1.What are the uses of phosphate backbone in the pharmaceutical industry?
Phosphate is a crucial mineral in the pharmaceutical industry, playing a vital role in numerous processes and products. It is commonly used in the production of medication, as well as in the formulation of various vaccines and antibiotics. Additionally, phosphate is an essential ingredient in the manufacturing of vitamins, which are essential for maintaining good health. It is also used as a buffering agent to control the pH levels in medications, making them safe for consumption. Moreover, phosphate is used as an excipient, ensuring the stability and effectiveness of drugs. In summary, phosphate has a multitude of uses in the pharmaceutical industry, making it an indispensable component in the creation of medicines and other health-related products.
2.Are phosphate backbone harmful?
We are a professional phosphate backbone company dedicated to providing high quality products and services.
Phosphates are not inherently harmful to humans or the environment. In fact, they are essential nutrients for plant and animal growth. However, excessive amounts of phosphates can cause environmental issues such as eutrophication, which is the overgrowth of algae and other aquatic plants that can harm aquatic ecosystems. In addition, high levels of phosphates in drinking water can lead to health concerns such as kidney damage. Therefore, it is important to regulate and monitor the use of phosphates in products such as fertilizers and detergents to prevent negative impacts on the environment and human health.
3.In which industries do phosphate backbone play an important role?
We are a new phosphate backbone manufacturer.
Phosphate is a crucial resource in various industries, making significant contributions to global economies. It is a key ingredient in fertilizers, providing essential nutrients for crop growth and increasing agricultural productivity. Phosphate is also used in the production of animal feed, promoting healthy growth and development in livestock. In addition, it is widely used in the manufacturing of detergents, soaps, and other cleaning products. The pharmaceutical and food industries also heavily rely on phosphate for the production of medicines, nutritional supplements, and food additives. Furthermore, phosphate is an important component in the production of steel and other industrial chemicals. Therefore, phosphate plays a crucial role in agriculture, food production, cleaning, pharmaceuticals, and industrial manufacturing, making it a valuable resource for various industries.

4.Can phosphate backbone be used to make building materials?
We adhere to the principle of integrity and transparency, and establish long -term relationships with partners, and we attach great importance to this detail.
Yes, phosphate can be used to make building materials such as cement, plaster, and drywall. Phosphate is commonly used as a binding agent in these materials, providing strength and durability. It is also used as a flame retardant in some building materials. Additionally, phosphate can be used as a fertilizer in the production of building materials made from natural materials such as wood and bamboo.
5.What is the difference between phosphate backbone and organic fertilizers?
Phosphate and organic fertilizers are two commonly used types of fertilizers in agriculture, but they differ in their origin, composition, and benefits. Phosphate fertilizers are made from mined rock phosphate and contain high levels of phosphorus, an essential nutrient for plant growth. On the other hand, organic fertilizers are derived from natural sources such as animal manure, compost, and crop residues. They are rich in organic matter and micronutrients, which help improve soil health and increase crop yields. While phosphate fertilizers show immediate results, organic fertilizers provide a slow release of nutrients, leading to long-term soil fertility. Additionally, organic fertilizers are more environmentally friendly and sustainable, while phosphate fertilizers can have negative impacts on the environment if overused.
6.What are the characteristics of magnesium phosphate backbone?
We enjoy high authority and influence in the industry and continue to innovate products and service models.
Magnesium phosphate is a compound that consists of magnesium and phosphate ions. It is a white, odorless solid that is commonly used in various industries such as food, fertilizers, and medicine. This compound possesses some unique characteristics that make it highly versatile and useful. Firstly, it is highly soluble in water, making it easy to incorporate into various solutions. Additionally, it has excellent thermal stability, making it resistant to high temperatures without decomposing. This quality makes it suitable for use as a fire retardant. Furthermore, magnesium phosphate has a low toxicity level, making it safe to use in food and medical applications. It also acts as a natural fertilizer, providing plants with essential nutrients like phosphorus and magnesium.

7.Can phosphate backbone be used to make batteries?
phosphate backbone is not a product only, but also can help you comes to money-making.
Yes, phosphate can be used to make batteries. Phosphate-based batteries, also known as lithium iron phosphate (LiFePO4) batteries, are a type of rechargeable battery that uses phosphate as the cathode material. These batteries are known for their high energy density, long lifespan, and safety compared to other types of batteries. They are commonly used in electric vehicles, solar energy storage systems, and other applications that require high-performance batteries.
8.What foods contain phosphate backbone?
We should perform well in market competition, and the prices of phosphate backbone products have a great competitive advantage.
1. Dairy products: Milk, cheese, and yogurt are all high in phosphate.
2. Meat and poultry: Beef, chicken, and pork are good sources of phosphate.
3. Seafood: Fish, shrimp, and other seafood are also high in phosphate.
4. Nuts and seeds: Almonds, cashews, and sunflower seeds are all good sources of phosphate.
5. Whole grains: Whole wheat, oats, and brown rice are all high in phosphate.
6. Legumes: Beans, lentils, and peas are all good sources of phosphate.
7. Eggs: Both the yolk and white of an egg contain phosphate.
8. Chocolate: Dark chocolate is a good source of phosphate.
9. Carbonated beverages: Many soft drinks and energy drinks contain phosphate.
10. Processed foods: Many processed foods, such as canned soups and frozen meals, contain added phosphate as a preservative or flavor enhancer.
9.What are the characteristics of dual-nutrient fertilizers of phosphate backbone and diammonium phosphate backbone?
Dual-nutrient fertilizers that contain both phosphate and diammonium phosphate have several key characteristics that make them beneficial for plant growth. First, these fertilizers provide a balanced blend of phosphorous and nitrogen, two essential nutrients for plant development. Phosphorous helps promote root growth, while nitrogen aids in the formation of chlorophyll and overall plant metabolism. Secondly, the dual-nutrient combination allows for efficient and even distribution of nutrients throughout the soil, resulting in uniform plant growth. Additionally, these fertilizers have a low salt index, meaning they will not cause fertilizer burn or damage to plant roots. The slow-release properties of phosphate and diammonium phosphate also contribute to long-lasting effects, reducing the need for frequent reapplication.

10.Are phosphate backbone common on Earth?
We continuously upgrade our skills and knowledge to adapt to changing phosphate backbone market needs.
Yes, phosphates are common on Earth. They are found in rocks, soils, and water, and are essential for life as they are a key component of DNA, RNA, and ATP (adenosine triphosphate). Phosphates are also used in fertilizers, detergents, and other industrial products.
11.How to test the phosphate backbone content in food?
We have a first -class management team, and we pay attention to teamwork to achieve common goals.
There are several methods for testing the phosphate content in food. One common method is to use a colorimetric test that relies on the reaction between phosphate ions and a reagent solution. This test produces a color change that can be compared to a color chart to determine the level of phosphate present in the food sample. Another method is to use ion chromatography, which involves separating and quantifying the different ions present in the food sample. This method provides a more precise measurement of phosphate levels. Additionally, some food manufacturers may use in-house laboratory testing or send samples to external laboratories for more comprehensive analysis. No matter the method used, it is important to follow proper protocols and use reliable equipment to ensure accurate results. Regular testing of phosphate levels in food is crucial for maintaining food safety and ensuring compliance with regulatory standards.
12.How to use phosphate backbone safely?
Phosphate is a commonly used chemical compound that has various industrial, agricultural, and household applications. However, it can also be hazardous if not handled and used properly. Here are some tips on how to use phosphate safely:
1. Read and follow the safety instructions provided on the product label or packaging.
2. Wear appropriate protective gear, such as goggles, gloves, and a mask, when handling phosphate.
3. Avoid inhaling or ingesting the product. If contact with skin or eyes occurs, immediately rinse with plenty of water.
4. Store phosphate in a cool, dry, and well-ventilated area, away from sources of heat and ignition.
5. Keep phosphate out of reach of children and pets.
6. When using phosphate in large quantities or for extended periods of time, it is recommended to use it in a well-ventilated area.
7. Dispose of unused or leftover product according to local regulations and guidelines.
By following these safety precautions, you can ensure the safe and responsible use of phosphate.

13.Which countries have the largest international phosphate backbone production?
1. China
2. Morocco
3. United States
4. Russia
5. Jordan
6. Saudi Arabia
7. Egypt
8. Brazil
9. Tunisia
10. Israel
14.What is the chemical structure of phosphate backbone?
We have a professional team that is committed to the innovation and development of phosphate backbone.
The chemical structure of phosphate is a polyatomic ion with the chemical formula PO4^3-. It consists of one phosphorus atom bonded to four oxygen atoms in a tetrahedral arrangement. The phosphorus atom is in the center, with three single bonds to oxygen atoms and one double bond to another oxygen atom. The overall charge of the ion is negative three.
15.What phosphate backbone are produced during denitrification?
No phosphate is produced during denitrification. Denitrification is a process in which nitrate (NO3-) is converted into nitrogen gas (N2) by bacteria, and does not involve the production of phosphate.
