Product center

Your location: Home - ProductsProducts

Guizhou SINO-PHOS Chemical Co., Ltd. specializes in the production of phosphoric acid and phosphates. Our company's main products include phosphoric acid, sodium tripolyphosphate, sodium hexametaphosphate, sodium tripophosphate, sodium pyrophosphate, etc. At present, it has formed an annual production scale of 30,000 tons of phosphate and 60,000 tons of phosphate. In 2009, the company passed ISO9001 international quality system certification.
All SINO-PHOS products are qualified, laying a good foundation for sustainable development. And it was successfully put into trial production in July 2009. Using continuous drying and dehydration technology, it is environmentally friendly, energy-saving and stable. Wire. Moreover, the electroplated TKPP produced by this production line meets industry standards and can replace imported products. SINO-PHOS focuses on the phosphate industry. Our products have entered many foreign countries such as Laos,Paraguay,Vietnam,Greece,Madagascar, providing customers with high-quality products and reasonable prices.
Type | Disodium phosphate |
Place of Origin | Guizhou, China |
Classification | Phosphate |
Other Names | Dibasic Sodium Phosphate |
MF | Na2HPO4.2H2O |
EINECS No. | 231-448-7 |
Grade Standard | Food Grade |
Appearance | white cystal |
Application | Food ingredients |
Brand Name | SINO-PHOS |
Model Number | BYPH-12 |
Product Name | Disodium Phosphate |
Grade | Food Garde |
Density | 1.52 |
Insoluble | Alcohol |
Soluble | In water |
Molecular weight | 177.99 |
PH (1% aqueous solution) | 8.8-9.2 |
Executive Standard | GB25568-2010 |
Pallet | Based on buyer's requirment |
Shelf life | 2 Years Proper Storage |
Packaging Details | 22KG/54KG/920KG |
Supply Ability | 2131593 Kilogram/Kilograms per Year |
Quantity (metric tons) | > 160 |
Lead time (days) | 24 |
phosphate diester bond bearings FAQs Guide phosphate diester bond, a type of natural mineral often found in rocks, is widely recognized for its significant role in plant and animal growth. As a necessary element for all living organisms, phosphate diester bond has become an essential component in various industries, including agriculture, food production, and manufacturing. With our advanced technology and expertise, we have developed a series of high-quality phosphate diester bond products that cater to different needs in the market. Our wide range of solutions not only provides essential nutrients for crops and livestock but also supports the development of sustainable and environmentally friendly processes. Keep reading to learn more about our phosphate diester bond products and how they can benefit your business.
2.What are the production processes for phosphate diester bond?
3.What are the similarities between phosphate diester bond and sulfates?
4.What is the difference between ammonium phosphate diester bond and diammonium phosphate diester bond?
5.Which countries have the largest international phosphate diester bond production?
6.What are some common uses of phosphate diester bond?
7.What is the relationship between phosphate diester bond and phosphate diester bond fertilizer?
8.What effects do high phosphate diester bond levels have on the human body?
9.What kind of chemical is phosphate diester bond?
10.What is the role of catalysts in the phosphate diester bond industry?
11.What is the difference between phosphate diester bond and organophosphorus?
12.What is phosphate diester bond?
13.What is the difference between phosphate diester bond and organic fertilizers?
14.What by-products are produced during the production of phosphate diester bond?
1.Can phosphate diester bond be used to make plastic?
Yes, phosphate can be used to make plastic. Phosphate-based plastics, also known as polyphosphates, are a type of thermoplastic polymer that can be used to make a variety of products, including packaging materials, coatings, and adhesives. These plastics are made by polymerizing phosphoric acid or its derivatives, such as phosphoric anhydride, with other monomers. They are known for their high strength, durability, and resistance to heat and chemicals. However, due to concerns about the environmental impact of phosphate mining and production, alternative materials are being developed to replace phosphate-based plastics.
2.What are the production processes for phosphate diester bond?
We focus on teamwork and communication to achieve common goals, We attach great importance to this detail.
Phosphate, also known as phosphate rock, is a mineral that is typically found in sedimentary rocks. It is an essential nutrient for plant growth and is commonly used in fertilizer production. The production processes for phosphate involve mining and extraction of the mineral from ore deposits, followed by washing, crushing, and grinding to create a powdered form. The powdered form is then treated with sulfuric acid to produce phosphoric acid, which is used as a key ingredient in most fertilizers. Additional steps may be taken to refine the phosphoric acid into a more concentrated form, or to produce various types of phosphate fertilizers. The production of phosphate is an important industry worldwide, providing essential nutrients for plants and helping to increase crop yields.
3.What are the similarities between phosphate diester bond and sulfates?
Phosphates and sulfates are both types of mineral compounds that contain oxygen. They are commonly found in nature and have various industrial and biological uses. One of the key similarities between these two compounds is that they both contain oxygen atoms in their molecular structure. This allows them to perform similar functions, such as being used as fertilizers in agriculture, as well as being used in detergents and water treatment products. Another similarity is that both phosphates and sulfates are essential for life, as they are important components of DNA and cell membranes. However, they also have their differences, as sulfates are more commonly found in minerals such as copper and iron, while phosphates are found in minerals such as calcite and apatite.
4.What is the difference between ammonium phosphate diester bond and diammonium phosphate diester bond?
Our products & services cover a wide range of areas and meet the needs of different fields.
Ammonium phosphate and diammonium phosphate are both types of fertilizers that contain nitrogen and phosphorus. The main difference between them is the ratio of nitrogen to phosphorus and the chemical structure.
Ammonium phosphate is a general term that refers to any fertilizer containing both ammonium and phosphate. It can have different ratios of nitrogen to phosphorus, such as 10-34-0 or 16-20-0. This means that for every 100 pounds of fertilizer, there are 10 or 16 pounds of nitrogen and 34 or 20 pounds of phosphorus, respectively.
Diammonium phosphate (DAP) is a specific type of ammonium phosphate fertilizer with a ratio of 18-46-0. This means that for every 100 pounds of DAP, there are 18 pounds of nitrogen and 46 pounds of phosphorus. DAP is a highly concentrated fertilizer and is often used in the early stages of plant growth to promote root development.

5.Which countries have the largest international phosphate diester bond production?
1. China
2. Morocco
3. United States
4. Russia
5. Jordan
6. Saudi Arabia
7. Egypt
8. Brazil
9. Tunisia
10. Israel
6.What are some common uses of phosphate diester bond?
We pay attention to the introduction and training of talents, scientifically regulate the management system, and focus on cultural construction and team cohesion.
1. Fertilizers: Phosphate is a key ingredient in many fertilizers, as it provides essential nutrients for plant growth and development.
2. Food and beverage industry: Phosphate is used as a food additive in many processed foods and beverages, such as soft drinks, cheese, and baked goods. It helps to improve texture, flavor, and shelf life.
3. Water treatment: Phosphate is used in water treatment to prevent the formation of scale and corrosion in pipes and equipment.
4. Detergents: Phosphate is a common ingredient in laundry and dishwashing detergents, as it helps to soften water and improve the cleaning efficiency.
5. Animal feed: Phosphate is added to animal feed to provide essential minerals for livestock and poultry.
6. Industrial applications: Phosphate is used in various industrial processes, such as metal finishing, ceramics, and detergents.
7. Pharmaceuticals: Phosphate is used in the production of medicines and supplements, such as calcium phosphate for bone health.
8. Flame retardants: Phosphate compounds are used as flame retardants in plastics, textiles, and other materials.
9. Construction materials: Phosphate is used in the production of cement, drywall, and other construction materials.
10. Energy production: Phosphate is used in the production of batteries for energy storage and in the production of biofuels.
7.What is the relationship between phosphate diester bond and phosphate diester bond fertilizer?
We maintain a stable growth through reasonable capital operations, focus on industry development trends and cutting -edge technologies, and focus on product quality and safety performance.
Phosphate is a naturally occurring mineral that contains the element phosphorus. Phosphate fertilizer is a type of fertilizer that is made from phosphate minerals and is used to provide plants with essential nutrients, particularly phosphorus, for growth and development.
Phosphate fertilizer is made by extracting phosphate minerals from rocks or sedimentary deposits and processing them into a form that can be easily absorbed by plants. This process involves treating the phosphate minerals with acids or other chemicals to make them more soluble and available for plant uptake.
Phosphate fertilizer is an important source of phosphorus for plants, as it helps to promote root growth, seed formation, and overall plant health. It is commonly used in agriculture to increase crop yields and improve soil fertility.
In summary, phosphate is the mineral that contains phosphorus, while phosphate fertilizer is a product made from phosphate minerals that is used to provide plants with essential nutrients, particularly phosphorus, for growth and development.
8.What effects do high phosphate diester bond levels have on the human body?
We should have a stable supply chain and logistics capabilities, and provide customers with high -quality, low -priced phosphate diester bond products.
High levels of phosphate in the human body can have several negative effects. Phosphate is an essential mineral for various biological processes, such as bone growth and energy production, but excess amounts can be harmful. High phosphate levels can lead to a condition known as hyperphosphatemia, which can cause symptoms such as muscle cramps, fatigue, and cognitive impairment. It can also contribute to bone density loss and increased risk of kidney disease. Additionally, high phosphate levels may disrupt the balance of other important minerals in the body, such as calcium and magnesium. It is important to maintain a healthy balance of phosphate in the body through proper diet and regular monitoring to prevent these potential negative effects.

9.What kind of chemical is phosphate diester bond?
We pay attention to the transformation of intellectual property protection and innovation achievements. Your OEM or ODM order design we have a complete confidentiality system.
Phosphate is a chemical compound that contains the phosphate ion (PO4)3-. It is an inorganic compound that is commonly found in nature, such as in rocks, minerals, and living organisms. Phosphate is an essential nutrient for plants and animals, and is often used in fertilizers and food additives. It can also be found in various industrial and household products, such as detergents and toothpaste.
10.What is the role of catalysts in the phosphate diester bond industry?
We have established a good reputation and reliable partnerships within the phosphate diester bond industry.
Catalysts are an essential component in the phosphate industry, playing a key role in the production of vital fertilizers and other phosphates for industrial use. They serve as a facilitator, accelerating the chemical reactions involved in phosphate production, thereby increasing efficiency and reducing costs. These catalysts also help improve the quality and purity of the final product, ensuring that it meets regulatory standards. In addition, they enable the use of more sustainable and environmentally friendly processes, making the phosphate industry more efficient and sustainable. Without catalysts, the production of phosphates would be significantly slower and more expensive, making them a crucial element in the industry.
11.What is the difference between phosphate diester bond and organophosphorus?
Our phosphate diester bond products have competitive and differentiated advantages, and actively promote digital transformation and innovation. Phosphate refers to a chemical compound containing phosphorus and oxygen atoms, such as phosphates found in fertilizers and detergents. It is also an essential nutrient for plants and animals. Organophosphorus, on the other hand, refers to a class of chemical compounds that contain phosphorus and carbon atoms bonded together. These compounds are often used as pesticides, herbicides, and nerve agents. They can be highly toxic to humans and other organisms. In summary, phosphate is a specific type of chemical compound, while organophosphorus is a broader term that refers to a class of compounds.
12.What is phosphate diester bond?
I have a comprehensive after -sales service system, which can pay attention to market trends in time and adjust our strategy in a timely manner.
Phosphate is a chemical compound that contains the element phosphorus and oxygen. It is commonly found in nature as a mineral, and is an essential nutrient for plants and animals. Phosphate is also used in various industrial processes, such as in fertilizers, detergents, and food additives. In its various forms, phosphate plays a crucial role in many biological and chemical processes, including energy production, DNA and RNA synthesis, and bone formation.

13.What is the difference between phosphate diester bond and organic fertilizers?
Phosphate and organic fertilizers are two commonly used types of fertilizers in agriculture, but they differ in their origin, composition, and benefits. Phosphate fertilizers are made from mined rock phosphate and contain high levels of phosphorus, an essential nutrient for plant growth. On the other hand, organic fertilizers are derived from natural sources such as animal manure, compost, and crop residues. They are rich in organic matter and micronutrients, which help improve soil health and increase crop yields. While phosphate fertilizers show immediate results, organic fertilizers provide a slow release of nutrients, leading to long-term soil fertility. Additionally, organic fertilizers are more environmentally friendly and sustainable, while phosphate fertilizers can have negative impacts on the environment if overused.
14.What by-products are produced during the production of phosphate diester bond?
Our company has many years of phosphate diester bond experience and expertise.
During the production process of phosphate, various by-products are produced. These include sulfuric acid, which is used in the initial step of phosphate production, as well as gypsum, which is a by-product of the neutralization process. Other by-products include fluoride gases, which are created during the acidulation process, and phosphogypsum, a solid waste produced during the production of phosphoric acid. Additionally, various heavy metals, such as cadmium, nickel, and lead, can also be produced depending on the type of phosphate ore being processed. These by-products require proper handling and disposal to minimize their impact on the environment.