Product center

Your location: Home - ProductsProducts

Guizhou SINO-PHOS Chemical Co., Ltd. can supply phosphoric acid, sodium tripolyphosphate, sodium hexametaphosphate, sodium tripophosphate, sodium pyrophosphate, etc. with the best quality and the most favorable price, 20,000-50,000 tons per month. For 18 years, it has focused on the research, development and production of phosphoric acid and phosphates. The company has a complete phosphating and phosphating production line, which can provide customers with a full-process production and quality assurance chain. Our products are widely used in DAP, SSP, TSP, MAP, NPK fertilizers and DCP, MDCP, TCP feed additives and other fertilizer industries in El Salvador,Guatemala,Papua New Guinea,Central African Republic,Cote d'Ivoire and other countries.
Type | Disodium Phosphate |
Place of Origin | Guizhou,china |
Classification | Phosphate |
Other Names | Sodium Phosphate, Dibasic |
MF | Na2HPO4 |
EINECS No. | 231-448-7 |
Grade Standard | Industrial Grade, Reagent Grade |
Appearance | White Powder |
Application | emulgator,etc |
Brand Name | SINO-PHOS |
Model Number | / |
Product name | Sodium Phosphate, Dibasic |
Appearance | White powder |
Content Na2HPO4,( On dry basis),w/% | ≥97 |
Arsenic(As),mg/kg | ≤3 |
Heavy metal(as Pb),mg/kg | ≤10 |
Lead(Pb),mg/kg | ≤3 |
Fluorides(as F),mg/kg | ≤58 |
Insoluble substances,w/% | ≤0.2 |
Loss on drying,w/% | ≤8 |
Packaging Details | 5g/10g/50g/264g/500g/1kg/Bottle |
Supply Ability | 553 Kilogram/Kilograms per Month |
Quantity (grams) | > 261 |
Lead time (days) | 20 |
phosphate enzyme bearings FAQs Guide
phosphate enzyme, a type of natural mineral often found in rocks, is widely recognized for its significant role in plant and animal growth. As a necessary element for all living organisms, phosphate enzyme has become an essential component in various industries, including agriculture, food production, and manufacturing. With our advanced technology and expertise, we have developed a series of high-quality phosphate enzyme products that cater to different needs in the market. Our wide range of solutions not only provides essential nutrients for crops and livestock but also supports the development of sustainable and environmentally friendly processes. Keep reading to learn more about our phosphate enzyme products and how they can benefit your business.
2.What effects do high phosphate enzyme levels have on the human body?
3.In which industries do phosphate enzyme play an important role?
4.What are the environmental benefits of phosphate enzyme recycling?
5.What are polyphosphate enzyme?
6.How to use phosphate enzyme safely?
7.Does phosphate enzyme promote certain diseases?
8.What is the role of catalysts in the phosphate enzyme industry?
9.What is the chemical structure of phosphate enzyme?
10.What is the relationship between phosphate enzyme and calcium?
11.Can phosphate enzyme be used to make batteries?
12.phosphate enzyme What technology is used in making polyphosphate enzyme?
13.Can phosphate enzyme be used as fertilizer?
14.What is the difference between phosphate enzyme and organic compounds?
1.What compounds can phosphate enzyme form?
Phosphate has the ability to form a wide variety of compounds, including phosphate salts, phosphates used in fertilizers, phosphoric acid, and organic phosphates found in living organisms. It also forms important compounds such as DNA and ATP, which are crucial for energy storage and transfer in living organisms. Phosphate compounds are essential for various industrial and agricultural applications, as well as for the functioning of biological systems.
2.What effects do high phosphate enzyme levels have on the human body?
We should have a stable supply chain and logistics capabilities, and provide customers with high -quality, low -priced phosphate enzyme products.
High levels of phosphate in the human body can have several negative effects. Phosphate is an essential mineral for various biological processes, such as bone growth and energy production, but excess amounts can be harmful. High phosphate levels can lead to a condition known as hyperphosphatemia, which can cause symptoms such as muscle cramps, fatigue, and cognitive impairment. It can also contribute to bone density loss and increased risk of kidney disease. Additionally, high phosphate levels may disrupt the balance of other important minerals in the body, such as calcium and magnesium. It is important to maintain a healthy balance of phosphate in the body through proper diet and regular monitoring to prevent these potential negative effects.
3.In which industries do phosphate enzyme play an important role?
We are a new phosphate enzyme manufacturer.
Phosphate is a crucial resource in various industries, making significant contributions to global economies. It is a key ingredient in fertilizers, providing essential nutrients for crop growth and increasing agricultural productivity. Phosphate is also used in the production of animal feed, promoting healthy growth and development in livestock. In addition, it is widely used in the manufacturing of detergents, soaps, and other cleaning products. The pharmaceutical and food industries also heavily rely on phosphate for the production of medicines, nutritional supplements, and food additives. Furthermore, phosphate is an important component in the production of steel and other industrial chemicals. Therefore, phosphate plays a crucial role in agriculture, food production, cleaning, pharmaceuticals, and industrial manufacturing, making it a valuable resource for various industries.
4.What are the environmental benefits of phosphate enzyme recycling?
Phosphate is a key nutrient that is essential for the growth of plants and the health of our ecosystems. It is most commonly obtained from phosphate mining, a process that has significant environmental impacts including soil erosion, contamination of water sources, and loss of biodiversity. However, there is a more sustainable way to obtain and reuse phosphate – through recycling. Phosphate recycling involves recovering and reusing phosphorus from various sources such as wastewater, manure, and industrial byproducts. This process has many environmental benefits, including reducing the demand for new phosphate mining, decreasing pollution and eutrophication of water bodies, and conserving natural resources. By promoting phosphate recycling, we can help protect our environment and create a more sustainable future.
5.What are polyphosphate enzyme?
We focus on innovation and continuous improvement to maintain a competitive advantage.
Polyphosphates are a group of compounds that contain multiple phosphate groups linked together. They can be found naturally in some foods, such as meat and dairy products, and are also used as food additives to improve texture, prevent spoilage, and enhance flavor. In addition, polyphosphates are used in industrial and household products, such as detergents and water treatment chemicals, for their ability to bind to minerals and prevent scale buildup. They are also used in some medications and as fertilizers in agriculture.

6.How to use phosphate enzyme safely?
Phosphate is a commonly used chemical compound that has various industrial, agricultural, and household applications. However, it can also be hazardous if not handled and used properly. Here are some tips on how to use phosphate safely:
1. Read and follow the safety instructions provided on the product label or packaging.
2. Wear appropriate protective gear, such as goggles, gloves, and a mask, when handling phosphate.
3. Avoid inhaling or ingesting the product. If contact with skin or eyes occurs, immediately rinse with plenty of water.
4. Store phosphate in a cool, dry, and well-ventilated area, away from sources of heat and ignition.
5. Keep phosphate out of reach of children and pets.
6. When using phosphate in large quantities or for extended periods of time, it is recommended to use it in a well-ventilated area.
7. Dispose of unused or leftover product according to local regulations and guidelines.
By following these safety precautions, you can ensure the safe and responsible use of phosphate.
7.Does phosphate enzyme promote certain diseases?
We focus on providing high phosphate enzyme quality products and services.
There is no evidence to suggest that phosphate directly promotes certain diseases. However, excessive intake of phosphate through diet or supplements can lead to health issues such as kidney disease, heart disease, and osteoporosis. Additionally, high levels of phosphate in the body can disrupt the balance of other minerals, such as calcium, which can contribute to the development of certain diseases. It is important to maintain a balanced intake of phosphate and other minerals for overall health and disease prevention.
8.What is the role of catalysts in the phosphate enzyme industry?
We have established a good reputation and reliable partnerships within the phosphate enzyme industry.
Catalysts are an essential component in the phosphate industry, playing a key role in the production of vital fertilizers and other phosphates for industrial use. They serve as a facilitator, accelerating the chemical reactions involved in phosphate production, thereby increasing efficiency and reducing costs. These catalysts also help improve the quality and purity of the final product, ensuring that it meets regulatory standards. In addition, they enable the use of more sustainable and environmentally friendly processes, making the phosphate industry more efficient and sustainable. Without catalysts, the production of phosphates would be significantly slower and more expensive, making them a crucial element in the industry.
9.What is the chemical structure of phosphate enzyme?
We have a professional team that is committed to the innovation and development of phosphate enzyme.
The chemical structure of phosphate is a polyatomic ion with the chemical formula PO4^3-. It consists of one phosphorus atom bonded to four oxygen atoms in a tetrahedral arrangement. The phosphorus atom is in the center, with three single bonds to oxygen atoms and one double bond to another oxygen atom. The overall charge of the ion is negative three.
10.What is the relationship between phosphate enzyme and calcium?
As one of the top phosphate enzyme manufacturers in China, we take this very seriously.
Phosphate and calcium are essential minerals in the human body and they are closely related in terms of their functions and interactions. Both of them play important roles in maintaining strong bones, teeth and overall skeletal health. Calcium is primarily responsible for providing structural support and strength in bones, while phosphate helps to regulate the calcium levels in the body. In addition, both minerals are vital for proper muscle function, nerve transmission, and hormone production. Phosphate and calcium also work together to support the formation of healthy teeth and maintain the body's acid-base balance. While the human body requires both phosphate and calcium, it is important to maintain a proper balance between the two minerals for optimal health.

11.Can phosphate enzyme be used to make batteries?
phosphate enzyme is not a product only, but also can help you comes to money-making.
Yes, phosphate can be used to make batteries. Phosphate-based batteries, also known as lithium iron phosphate (LiFePO4) batteries, are a type of rechargeable battery that uses phosphate as the cathode material. These batteries are known for their high energy density, long lifespan, and safety compared to other types of batteries. They are commonly used in electric vehicles, solar energy storage systems, and other applications that require high-performance batteries.
12.phosphate enzyme What technology is used in making polyphosphate enzyme?
We have advanced production equipment and technology to meet the needs of customers, and can provide customers with high quality, low priced phosphate enzyme products.
The technology used in making polyphosphate is typically a chemical process called polymerization. This involves combining monomers (smaller molecules) to form long chains of repeating units, known as polymers. In the case of polyphosphate, the monomers are typically phosphoric acid or phosphates, which are combined to form long chains of phosphate molecules.
The process of polymerization can be carried out using various methods, including solution polymerization, emulsion polymerization, and suspension polymerization. These methods involve mixing the monomers with a catalyst and other additives, and then subjecting the mixture to heat, pressure, or radiation to initiate the polymerization reaction.
Once the polymerization is complete, the resulting polyphosphate can be further processed and modified to meet specific requirements for different applications. This may involve adding other chemicals, blending with other polymers, or shaping the polyphosphate into different forms, such as pellets, sheets, or fibers.
13.Can phosphate enzyme be used as fertilizer?
Our phosphate enzyme products undergo strict quality control to ensure customer satisfaction.
Yes, phosphate is commonly used as a fertilizer in agriculture. It is a major component of most commercial fertilizers and is essential for plant growth and development. Phosphate helps plants to develop strong roots, promotes flower and fruit production, and aids in the transfer of energy within the plant. It is also an important nutrient for crop yield and quality. However, excessive use of phosphate fertilizers can lead to environmental pollution and eutrophication of water bodies. Therefore, it is important to use phosphate fertilizers in a responsible and sustainable manner.
14.What is the difference between phosphate enzyme and organic compounds?
Phosphate refers to a specific chemical compound containing the element phosphorus, while organic compounds refer to a broad category of compounds that contain carbon and are found in living organisms. Phosphate is a type of inorganic compound, meaning it does not contain carbon, while organic compounds are characterized by the presence of carbon-hydrogen bonds. Additionally, phosphate is often used as a source of energy in biological processes, while organic compounds can serve a variety of functions such as structural support, energy storage, and signaling.