Product center

Your location: Home - ProductsProducts

Guizhou SINO-PHOS Chemical Co., Ltd. specializes in the production of phosphoric acid and phosphates. Our company's main products include phosphoric acid, sodium tripolyphosphate, sodium hexametaphosphate, sodium tripophosphate, sodium pyrophosphate, etc. At present, it has formed an annual production scale of 30,000 tons of phosphate and 60,000 tons of phosphate. In 2009, the company passed ISO9001 international quality system certification.
All SINO-PHOS products are qualified, laying a good foundation for sustainable development. And it was successfully put into trial production in July 2009. Using continuous drying and dehydration technology, it is environmentally friendly, energy-saving and stable. Wire. Moreover, the electroplated TKPP produced by this production line meets industry standards and can replace imported products. SINO-PHOS focuses on the phosphate industry. Our products have entered many foreign countries such as Norway,United Kingdom,Latvia, providing customers with high-quality products and reasonable prices.
Type | Disodium phosphate |
Place of Origin | Guizhou, China |
Classification | Phosphate |
Other Names | Dibasic Sodium Phosphate |
MF | Na2HPO4.2H2O |
EINECS No. | 231-448-7 |
Grade Standard | Food Grade |
Appearance | white cystal |
Application | Food ingredients |
Brand Name | SINO-PHOS |
Model Number | BYPH-12 |
Product Name | Disodium Phosphate |
Grade | Food Garde |
Density | 1.52 |
Insoluble | Alcohol |
Soluble | In water |
Molecular weight | 177.99 |
PH (1% aqueous solution) | 8.8-9.2 |
Executive Standard | GB25568-2010 |
Pallet | Based on buyer's requirment |
Shelf life | 2 Years Proper Storage |
Packaging Details | 19KG/40KG/1007KG |
Supply Ability | 3948235 Kilogram/Kilograms per Year |
Quantity (metric tons) | > 136 |
Lead time (days) | 26 |
phosphate of magnesia bearings FAQs Guide phosphate of magnesia, a type of natural mineral often found in rocks, is widely recognized for its significant role in plant and animal growth. As a necessary element for all living organisms, phosphate of magnesia has become an essential component in various industries, including agriculture, food production, and manufacturing. With our advanced technology and expertise, we have developed a series of high-quality phosphate of magnesia products that cater to different needs in the market. Our wide range of solutions not only provides essential nutrients for crops and livestock but also supports the development of sustainable and environmentally friendly processes. Keep reading to learn more about our phosphate of magnesia products and how they can benefit your business.
2.What compounds can phosphate of magnesia form?
3.What diseases can phosphate of magnesia be used to treat?
4.Can phosphate of magnesia be used to make building materials?
5.How to test the phosphate of magnesia content in food?
6.What are the production processes for phosphate of magnesia?
7.What is the chemical structure of phosphate of magnesia?
8.What measures does phosphate of magnesia take to protect the environment?
9.What is tripolyphosphate of magnesia?
10.What are the characteristics of magnesium phosphate of magnesia?
11.Can phosphate of magnesia be used to make plastic?
12.What is anionic phosphate of magnesia?
13.What impact do phosphate of magnesia have on the environment?
14.What effects does phosphate of magnesia have on human health?
15.What is the difference between phosphate of magnesia and organophosphorus?
1.How to distinguish phosphate of magnesia?
We have the leading technology and innovation capabilities, and attach importance to employee training and development, and provide promotion opportunities.
Phosphate, a chemical compound containing the element phosphorus, is commonly found in many materials such as fertilizers, detergents, and food. However, it is important to be able to distinguish phosphate from other compounds due to its potential environmental and health impacts. One way to do this is by testing for the presence of phosphates using specialized equipment, such as a spectrophotometer, which measures the absorption of light by the compound. Additionally, one can also use chemical tests, such as adding molybdate reagent to a sample, which will produce a yellow color if phosphates are present. Another method is by calculating the amount of phosphate based on the weight of a sample and the percentage of phosphorus in the compound. By using these techniques, one can accurately identify and quantify phosphate, allowing for proper handling and disposal to prevent harm to the environment and human health.
2.What compounds can phosphate of magnesia form?
Phosphate has the ability to form a wide variety of compounds, including phosphate salts, phosphates used in fertilizers, phosphoric acid, and organic phosphates found in living organisms. It also forms important compounds such as DNA and ATP, which are crucial for energy storage and transfer in living organisms. Phosphate compounds are essential for various industrial and agricultural applications, as well as for the functioning of biological systems.
3.What diseases can phosphate of magnesia be used to treat?
We adhere to the principle of quality first and have a complete production quality management system and quality inspection process.
Phosphate, one of the essential mineral components in our body, has been widely used in treating various diseases. It is commonly used in the treatment of osteoporosis, a condition characterized by low bone density and increased risk of fractures. Phosphate is also utilized in the treatment of kidney diseases, including kidney failure and renal tubular acidosis, where it helps to regulate electrolyte balance and maintain healthy kidney function. In addition, phosphate has been shown to be beneficial in managing certain genetic disorders that affect phosphate metabolism, such as hypophosphatemia and familial hypophosphatemic rickets. Furthermore, phosphate is used in the treatment of some inflammatory diseases, such as inflammatory bowel disease, due to its anti-inflammatory properties.

4.Can phosphate of magnesia be used to make building materials?
We adhere to the principle of integrity and transparency, and establish long -term relationships with partners, and we attach great importance to this detail.
Yes, phosphate can be used to make building materials such as cement, plaster, and drywall. Phosphate is commonly used as a binding agent in these materials, providing strength and durability. It is also used as a flame retardant in some building materials. Additionally, phosphate can be used as a fertilizer in the production of building materials made from natural materials such as wood and bamboo.
5.How to test the phosphate of magnesia content in food?
We have a first -class management team, and we pay attention to teamwork to achieve common goals.
There are several methods for testing the phosphate content in food. One common method is to use a colorimetric test that relies on the reaction between phosphate ions and a reagent solution. This test produces a color change that can be compared to a color chart to determine the level of phosphate present in the food sample. Another method is to use ion chromatography, which involves separating and quantifying the different ions present in the food sample. This method provides a more precise measurement of phosphate levels. Additionally, some food manufacturers may use in-house laboratory testing or send samples to external laboratories for more comprehensive analysis. No matter the method used, it is important to follow proper protocols and use reliable equipment to ensure accurate results. Regular testing of phosphate levels in food is crucial for maintaining food safety and ensuring compliance with regulatory standards.
6.What are the production processes for phosphate of magnesia?
We focus on teamwork and communication to achieve common goals, We attach great importance to this detail.
Phosphate, also known as phosphate rock, is a mineral that is typically found in sedimentary rocks. It is an essential nutrient for plant growth and is commonly used in fertilizer production. The production processes for phosphate involve mining and extraction of the mineral from ore deposits, followed by washing, crushing, and grinding to create a powdered form. The powdered form is then treated with sulfuric acid to produce phosphoric acid, which is used as a key ingredient in most fertilizers. Additional steps may be taken to refine the phosphoric acid into a more concentrated form, or to produce various types of phosphate fertilizers. The production of phosphate is an important industry worldwide, providing essential nutrients for plants and helping to increase crop yields.

7.What is the chemical structure of phosphate of magnesia?
We have a professional team that is committed to the innovation and development of phosphate of magnesia.
The chemical structure of phosphate is a polyatomic ion with the chemical formula PO4^3-. It consists of one phosphorus atom bonded to four oxygen atoms in a tetrahedral arrangement. The phosphorus atom is in the center, with three single bonds to oxygen atoms and one double bond to another oxygen atom. The overall charge of the ion is negative three.
8.What measures does phosphate of magnesia take to protect the environment?
Being one of the top phosphate of magnesia manufacturers in China, We attach great importance to this detail.
Phosphate, a chemical compound composed of phosphorous and oxygen, takes various measures to protect the environment. Firstly, it is used in sustainable agriculture practices as a fertilizer, promoting plant growth without causing harmful effects to the soil or water. Phosphate also plays a crucial role in wastewater treatment, helping to remove pollutants and improve water quality. In addition, phosphate-based detergents have been replaced with alternative products to reduce their negative impact on aquatic life. Moreover, strict regulations and proper disposal methods are enforced to prevent phosphate pollution in rivers and oceans. Furthermore, continuous research and development are conducted to find environmentally-friendly ways of producing phosphate and its derivatives. Through these efforts, phosphate helps to maintain a healthy balance in the ecosystem and safeguard the environment.
9.What is tripolyphosphate of magnesia?
As one of the phosphate of magnesia market leaders, we are known for innovation and reliability.
Tripolyphosphate is a chemical compound with the formula Na5P3O10. It is a water-soluble salt that is commonly used as a food additive, detergent builder, and water softener. It is also used in industrial applications such as metal cleaning and water treatment. Tripolyphosphate is a white, odorless powder that is stable under normal conditions. It is considered safe for consumption and has a low toxicity.

10.What are the characteristics of magnesium phosphate of magnesia?
We enjoy high authority and influence in the industry and continue to innovate products and service models.
Magnesium phosphate is a compound that consists of magnesium and phosphate ions. It is a white, odorless solid that is commonly used in various industries such as food, fertilizers, and medicine. This compound possesses some unique characteristics that make it highly versatile and useful. Firstly, it is highly soluble in water, making it easy to incorporate into various solutions. Additionally, it has excellent thermal stability, making it resistant to high temperatures without decomposing. This quality makes it suitable for use as a fire retardant. Furthermore, magnesium phosphate has a low toxicity level, making it safe to use in food and medical applications. It also acts as a natural fertilizer, providing plants with essential nutrients like phosphorus and magnesium.
11.Can phosphate of magnesia be used to make plastic?
Yes, phosphate can be used to make plastic. Phosphate-based plastics, also known as polyphosphates, are a type of thermoplastic polymer that can be used to make a variety of products, including packaging materials, coatings, and adhesives. These plastics are made by polymerizing phosphoric acid or its derivatives, such as phosphoric anhydride, with other monomers. They are known for their high strength, durability, and resistance to heat and chemicals. However, due to concerns about the environmental impact of phosphate mining and production, alternative materials are being developed to replace phosphate-based plastics.
12.What is anionic phosphate of magnesia?
We actively participate in the phosphate of magnesia industry associations and organization activities. The corporate social responsibility performed well, and the focus of brand building and promotion
Anionic phosphate refers to a negatively charged ion that contains one phosphorus atom and four oxygen atoms, with a chemical formula of PO4^3-. It is commonly found in various compounds, such as phosphates in fertilizers and phospholipids in cell membranes. Anionic phosphate plays important roles in biological processes, such as energy storage and transfer, DNA and RNA synthesis, and bone formation.

13.What impact do phosphate of magnesia have on the environment?
Phosphate plays a crucial role in fertilizers, detergents, and animal feeds, making it an important component of modern society. However, the widespread use of phosphate also has significant impacts on the environment. Excessive release of phosphate into the environment can lead to eutrophication, where an increase in nutrients causes excessive algae growth, leading to oxygen depletion and harm to aquatic organisms. Phosphate runoff from agricultural activities can also pollute water sources and harm sensitive ecosystems. In addition, phosphate mining can lead to land degradation and loss of biodiversity. To mitigate these negative impacts, sustainable practices and regulations must be implemented to properly manage and limit phosphate use.
14.What effects does phosphate of magnesia have on human health?
Phosphate is an essential nutrient for human health, as it plays a vital role in many functions of the body. It is a key component in the formation of bones, teeth, and cell membranes. However, excessive intake of phosphate can also have negative effects on human health. Consuming too much phosphate can lead to an imbalance in the body's mineral levels, which can cause problems such as kidney damage, heart disease, and weakened bones. Additionally, high levels of phosphate in the body have been linked to an increased risk of cardiovascular disease, diabetes, and even certain types of cancer. Therefore, it is important to maintain a balanced and appropriate intake of phosphate in order to maintain good overall health.
15.What is the difference between phosphate of magnesia and organophosphorus?
Our phosphate of magnesia products have competitive and differentiated advantages, and actively promote digital transformation and innovation. Phosphate refers to a chemical compound containing phosphorus and oxygen atoms, such as phosphates found in fertilizers and detergents. It is also an essential nutrient for plants and animals. Organophosphorus, on the other hand, refers to a class of chemical compounds that contain phosphorus and carbon atoms bonded together. These compounds are often used as pesticides, herbicides, and nerve agents. They can be highly toxic to humans and other organisms. In summary, phosphate is a specific type of chemical compound, while organophosphorus is a broader term that refers to a class of compounds.
