Product center

Your location: Home - ProductsProducts

Guizhou SINO-PHOS Chemical Co., Ltd. was established in 2002 and is located in Guizhou, China. Strong scientific research strength, modern management system and high-quality marketing team have absolute advantages. For 18 years, it has focused on the R&D and production of phosphoric acid and phosphates. Its main products include phosphoric acid, sodium tripolyphosphate, sodium hexametaphosphate, sodium tripophosphate, sodium pyrophosphate, etc.
Now it has 3 GMP standard factories. At the same time, the factory has a R&D and quality inspection center, and has strong technical R&D strength. We also have 3 sales departments with more than 30 people, and sell our products to Qatar,Monaco,Colombia,Cuba,Yemen and other parts of the world. OEM service can also be accepted according to customer's needs.
Type | Disodium Phosphate |
Place of Origin | Guizhou,china |
Classification | Phosphate |
Other Names | Sodium Phosphate, Dibasic |
MF | Na2HPO4 |
EINECS No. | 231-448-7 |
Grade Standard | Industrial Grade, Reagent Grade |
Appearance | White Powder |
Application | emulgator,etc |
Brand Name | SINO-PHOS |
Model Number | / |
Product name | Sodium Phosphate, Dibasic |
Appearance | White powder |
Content Na2HPO4,( On dry basis),w/% | ≥90 |
Arsenic(As),mg/kg | ≤3 |
Heavy metal(as Pb),mg/kg | ≤9 |
Lead(Pb),mg/kg | ≤4 |
Fluorides(as F),mg/kg | ≤44 |
Insoluble substances,w/% | ≤0.2 |
Loss on drying,w/% | ≤4 |
Packaging Details | 5g/10g/50g/188g/500g/1kg/Bottle |
Supply Ability | 512 Kilogram/Kilograms per Month |
Quantity (grams) | > 154 |
Lead time (days) | 19 |
phosphate pit bearings FAQs Guide
phosphate pit, a type of natural mineral often found in rocks, is widely recognized for its significant role in plant and animal growth. As a necessary element for all living organisms, phosphate pit has become an essential component in various industries, including agriculture, food production, and manufacturing. With our advanced technology and expertise, we have developed a series of high-quality phosphate pit products that cater to different needs in the market. Our wide range of solutions not only provides essential nutrients for crops and livestock but also supports the development of sustainable and environmentally friendly processes. Keep reading to learn more about our phosphate pit products and how they can benefit your business.
2.What is the chemical structure of phosphate pit?
3.Which countries have the largest international phosphate pit production?
4.phosphate pit What technology is used in making polyphosphate pit?
5.What are the environmental benefits of phosphate pit recycling?
6.What is the difference between phosphate pit and organic compounds?
7.How to test the phosphate pit content in food?
8.Can phosphate pit be used to make batteries?
9.How to control the concentration of phosphate pit in water?
10.What is tripolyphosphate pit?
11.What by-products are produced during the production of phosphate pit?
12.What factors affect the price of phosphate pit?
13.What are the characteristics of dual-nutrient fertilizers of phosphate pit and diammonium phosphate pit?
14.What are the common forms of phosphate pit?
15.What is the role of catalysts in the phosphate pit industry?
16.What is the difference between phosphate pit and diammonium phosphate pit?
1.What is the difference between ammonium phosphate pit and diammonium phosphate pit?
Our products & services cover a wide range of areas and meet the needs of different fields.
Ammonium phosphate and diammonium phosphate are both types of fertilizers that contain nitrogen and phosphorus. The main difference between them is the ratio of nitrogen to phosphorus and the chemical structure.
Ammonium phosphate is a general term that refers to any fertilizer containing both ammonium and phosphate. It can have different ratios of nitrogen to phosphorus, such as 10-34-0 or 16-20-0. This means that for every 100 pounds of fertilizer, there are 10 or 16 pounds of nitrogen and 34 or 20 pounds of phosphorus, respectively.
Diammonium phosphate (DAP) is a specific type of ammonium phosphate fertilizer with a ratio of 18-46-0. This means that for every 100 pounds of DAP, there are 18 pounds of nitrogen and 46 pounds of phosphorus. DAP is a highly concentrated fertilizer and is often used in the early stages of plant growth to promote root development.
2.What is the chemical structure of phosphate pit?
We have a professional team that is committed to the innovation and development of phosphate pit.
The chemical structure of phosphate is a polyatomic ion with the chemical formula PO4^3-. It consists of one phosphorus atom bonded to four oxygen atoms in a tetrahedral arrangement. The phosphorus atom is in the center, with three single bonds to oxygen atoms and one double bond to another oxygen atom. The overall charge of the ion is negative three.
3.Which countries have the largest international phosphate pit production?
1. China
2. Morocco
3. United States
4. Russia
5. Jordan
6. Saudi Arabia
7. Egypt
8. Brazil
9. Tunisia
10. Israel
4.phosphate pit What technology is used in making polyphosphate pit?
We have advanced production equipment and technology to meet the needs of customers, and can provide customers with high quality, low priced phosphate pit products.
The technology used in making polyphosphate is typically a chemical process called polymerization. This involves combining monomers (smaller molecules) to form long chains of repeating units, known as polymers. In the case of polyphosphate, the monomers are typically phosphoric acid or phosphates, which are combined to form long chains of phosphate molecules.
The process of polymerization can be carried out using various methods, including solution polymerization, emulsion polymerization, and suspension polymerization. These methods involve mixing the monomers with a catalyst and other additives, and then subjecting the mixture to heat, pressure, or radiation to initiate the polymerization reaction.
Once the polymerization is complete, the resulting polyphosphate can be further processed and modified to meet specific requirements for different applications. This may involve adding other chemicals, blending with other polymers, or shaping the polyphosphate into different forms, such as pellets, sheets, or fibers.

5.What are the environmental benefits of phosphate pit recycling?
Phosphate is a key nutrient that is essential for the growth of plants and the health of our ecosystems. It is most commonly obtained from phosphate mining, a process that has significant environmental impacts including soil erosion, contamination of water sources, and loss of biodiversity. However, there is a more sustainable way to obtain and reuse phosphate – through recycling. Phosphate recycling involves recovering and reusing phosphorus from various sources such as wastewater, manure, and industrial byproducts. This process has many environmental benefits, including reducing the demand for new phosphate mining, decreasing pollution and eutrophication of water bodies, and conserving natural resources. By promoting phosphate recycling, we can help protect our environment and create a more sustainable future.
6.What is the difference between phosphate pit and organic compounds?
Phosphate refers to a specific chemical compound containing the element phosphorus, while organic compounds refer to a broad category of compounds that contain carbon and are found in living organisms. Phosphate is a type of inorganic compound, meaning it does not contain carbon, while organic compounds are characterized by the presence of carbon-hydrogen bonds. Additionally, phosphate is often used as a source of energy in biological processes, while organic compounds can serve a variety of functions such as structural support, energy storage, and signaling.
7.How to test the phosphate pit content in food?
We have a first -class management team, and we pay attention to teamwork to achieve common goals.
There are several methods for testing the phosphate content in food. One common method is to use a colorimetric test that relies on the reaction between phosphate ions and a reagent solution. This test produces a color change that can be compared to a color chart to determine the level of phosphate present in the food sample. Another method is to use ion chromatography, which involves separating and quantifying the different ions present in the food sample. This method provides a more precise measurement of phosphate levels. Additionally, some food manufacturers may use in-house laboratory testing or send samples to external laboratories for more comprehensive analysis. No matter the method used, it is important to follow proper protocols and use reliable equipment to ensure accurate results. Regular testing of phosphate levels in food is crucial for maintaining food safety and ensuring compliance with regulatory standards.
8.Can phosphate pit be used to make batteries?
phosphate pit is not a product only, but also can help you comes to money-making.
Yes, phosphate can be used to make batteries. Phosphate-based batteries, also known as lithium iron phosphate (LiFePO4) batteries, are a type of rechargeable battery that uses phosphate as the cathode material. These batteries are known for their high energy density, long lifespan, and safety compared to other types of batteries. They are commonly used in electric vehicles, solar energy storage systems, and other applications that require high-performance batteries.

9.How to control the concentration of phosphate pit in water?
Phosphate is an essential nutrient for plant growth and is commonly found in water sources. However, high concentrations of phosphate can lead to eutrophication, causing harm to aquatic ecosystems. Therefore, it is important to control the concentration of phosphate in water. One way to do this is through proper wastewater treatment methods. Municipal treatment plants use techniques such as chemical precipitation and biological nutrient removal to remove excess phosphate from wastewater. Moreover, farmers can also reduce the use of phosphate-rich fertilizers and implement sustainable irrigation practices to prevent further contamination of water sources. Regular monitoring of water quality and implementing strict regulations can also help in controlling phosphate levels. Additionally, educating the public on the harmful effects of excessive phosphate in water can promote individual responsibility in reducing phosphate pollution. By combining these efforts, we can effectively control the concentration of phosphate in water and protect our planet's water resources.
10.What is tripolyphosphate pit?
As one of the phosphate pit market leaders, we are known for innovation and reliability.
Tripolyphosphate is a chemical compound with the formula Na5P3O10. It is a water-soluble salt that is commonly used as a food additive, detergent builder, and water softener. It is also used in industrial applications such as metal cleaning and water treatment. Tripolyphosphate is a white, odorless powder that is stable under normal conditions. It is considered safe for consumption and has a low toxicity.
11.What by-products are produced during the production of phosphate pit?
Our company has many years of phosphate pit experience and expertise.
During the production process of phosphate, various by-products are produced. These include sulfuric acid, which is used in the initial step of phosphate production, as well as gypsum, which is a by-product of the neutralization process. Other by-products include fluoride gases, which are created during the acidulation process, and phosphogypsum, a solid waste produced during the production of phosphoric acid. Additionally, various heavy metals, such as cadmium, nickel, and lead, can also be produced depending on the type of phosphate ore being processed. These by-products require proper handling and disposal to minimize their impact on the environment.
12.What factors affect the price of phosphate pit?
We have a wide range of phosphate pit customer groups and establishes long -term cooperative relationships with partners. The countries we provide services include .
The price of phosphate, a key mineral resource used in fertilizer production, is influenced by a variety of factors. These include supply and demand, political and economic stability in phosphate-producing countries, innovation and technological advancements in mining and processing techniques, and environmental regulations. Fluctuations in global market conditions, such as changes in agricultural practices and shifts in consumer demand for organic produce, can also impact the price of phosphate. Additionally, government subsidies and efforts to increase domestic production can play a role in determining the overall cost. As a critical component in the agricultural industry, the price of phosphate is constantly fluctuating and affected by a complex combination of factors.

13.What are the characteristics of dual-nutrient fertilizers of phosphate pit and diammonium phosphate pit?
Dual-nutrient fertilizers that contain both phosphate and diammonium phosphate have several key characteristics that make them beneficial for plant growth. First, these fertilizers provide a balanced blend of phosphorous and nitrogen, two essential nutrients for plant development. Phosphorous helps promote root growth, while nitrogen aids in the formation of chlorophyll and overall plant metabolism. Secondly, the dual-nutrient combination allows for efficient and even distribution of nutrients throughout the soil, resulting in uniform plant growth. Additionally, these fertilizers have a low salt index, meaning they will not cause fertilizer burn or damage to plant roots. The slow-release properties of phosphate and diammonium phosphate also contribute to long-lasting effects, reducing the need for frequent reapplication.
14.What are the common forms of phosphate pit?
We have flexible production capacity. Whether you are large orders or small orders, you can produce and release goods in a timely manner to meet customer needs.
1. Calcium phosphate: This is the most common form of phosphate found in nature and is the main component of bones and teeth.
2. Sodium phosphate: This form of phosphate is commonly used as a food additive and is also found in some medications.
3. Potassium phosphate: This form of phosphate is used as a fertilizer and is also found in some food products.
4. Magnesium phosphate: This form of phosphate is found in the body and is important for bone health and energy production.
5. Ammonium phosphate: This form of phosphate is used as a fertilizer and is also found in some cleaning products.
6. Dicalcium phosphate: This form of phosphate is commonly used as a dietary supplement and is also found in some toothpastes.
7. Monoammonium phosphate: This form of phosphate is used as a fertilizer and is also found in some fire extinguishers.
8. Tricalcium phosphate: This form of phosphate is used as a food additive and is also found in some toothpastes and cosmetics.
9. Disodium phosphate: This form of phosphate is used as a food additive and is also found in some cleaning products.
10. Tetrasodium pyrophosphate: This form of phosphate is used as a food additive and is also found in some toothpastes and detergents.
15.What is the role of catalysts in the phosphate pit industry?
We have established a good reputation and reliable partnerships within the phosphate pit industry.
Catalysts are an essential component in the phosphate industry, playing a key role in the production of vital fertilizers and other phosphates for industrial use. They serve as a facilitator, accelerating the chemical reactions involved in phosphate production, thereby increasing efficiency and reducing costs. These catalysts also help improve the quality and purity of the final product, ensuring that it meets regulatory standards. In addition, they enable the use of more sustainable and environmentally friendly processes, making the phosphate industry more efficient and sustainable. Without catalysts, the production of phosphates would be significantly slower and more expensive, making them a crucial element in the industry.
16.What is the difference between phosphate pit and diammonium phosphate pit?
We operate our phosphate pit business with integrity and honesty.
Phosphate refers to any compound containing the phosphate ion (PO4^3-), while diammonium phosphate (DAP) specifically refers to a compound with the chemical formula (NH4)2HPO4. DAP is a type of phosphate fertilizer commonly used in agriculture, while phosphate can refer to a variety of compounds with different uses and properties.
