Product center

Your location: Home - ProductsProducts

Guizhou SINO-PHOS Chemical Co., Ltd. is mainly dedicated to the research, development and production of phosphoric acid and phosphates. At the same time, we also provide other products and ODM services to old customers. Products such as: phosphoric acid, sodium tripolyphosphate, sodium hexametaphosphate, sodium tripolyphosphate, sodium pyrophosphate, etc. At present, it has formed an annual production scale of 30,000 tons of phosphate and 60,000 tons of phosphate. In 2009, the company passed ISO9001 international quality system certification.
We have been active in the market for nearly 20 years and have a professional sales and logistics team dedicated to providing customers with the best service with excellent quality and competitive prices. The service industry involves water treatment, agrochemical fertilizers, mining, washing and sanitation, food additives, etc. Due to our excellent service, now we can provide customers with more than 30 kinds of products, and our products are very popular in Marshall Islands,Moldova,Mali,Mauritius,Papua New Guinea,Grenada, the United States and Japan. Won high praise from customers.
Type | Disodium phosphate |
Place of Origin | Guizhou, China |
Classification | Phosphate |
Other Names | Dibasic Sodium Phosphate |
MF | Na2HPO4.2H2O |
EINECS No. | 231-448-7 |
Grade Standard | Food Grade |
Appearance | white cystal |
Application | Food ingredients |
Brand Name | SINO-PHOS |
Model Number | BYPH-12 |
Product Name | Disodium Phosphate |
Grade | Food Garde |
Density | 1.52 |
Insoluble | Alcohol |
Soluble | In water |
Molecular weight | 177.99 |
PH (1% aqueous solution) | 8.8-9.2 |
Executive Standard | GB25568-2010 |
Pallet | Based on buyer's requirment |
Shelf life | 2 Years Proper Storage |
Packaging Details | 15KG/58KG/978KG |
Supply Ability | 2448244 Kilogram/Kilograms per Year |
Quantity (metric tons) | > 182 |
Lead time (days) | 28 |
phosphate wash bearings FAQs Guide phosphate wash, a type of natural mineral often found in rocks, is widely recognized for its significant role in plant and animal growth. As a necessary element for all living organisms, phosphate wash has become an essential component in various industries, including agriculture, food production, and manufacturing. With our advanced technology and expertise, we have developed a series of high-quality phosphate wash products that cater to different needs in the market. Our wide range of solutions not only provides essential nutrients for crops and livestock but also supports the development of sustainable and environmentally friendly processes. Keep reading to learn more about our phosphate wash products and how they can benefit your business.
2.What is the relationship between phosphate wash and phosphate wash fertilizer?
3.Can phosphate wash be used to make plastic?
4.In which industries do phosphate wash play an important role?
5.How to control the concentration of phosphate wash in water?
6.Can phosphate wash be used as agricultural conservation agent?
7.What compounds can phosphate wash form?
8.phosphate wash What technology is used in making polyphosphate wash?
9.What diseases can phosphate wash be used to treat?
10.What is tripolyphosphate wash?
11.What are the similarities between phosphate wash and sulfates?
12.Can phosphate wash be used to make batteries?
13.Will phosphate wash be used in environmental protection projects?
14.How is phosphate wash extracted?
15.What is anionic phosphate wash?
1.What are the characteristics of magnesium phosphate wash?
We enjoy high authority and influence in the industry and continue to innovate products and service models.
Magnesium phosphate is a compound that consists of magnesium and phosphate ions. It is a white, odorless solid that is commonly used in various industries such as food, fertilizers, and medicine. This compound possesses some unique characteristics that make it highly versatile and useful. Firstly, it is highly soluble in water, making it easy to incorporate into various solutions. Additionally, it has excellent thermal stability, making it resistant to high temperatures without decomposing. This quality makes it suitable for use as a fire retardant. Furthermore, magnesium phosphate has a low toxicity level, making it safe to use in food and medical applications. It also acts as a natural fertilizer, providing plants with essential nutrients like phosphorus and magnesium.
2.What is the relationship between phosphate wash and phosphate wash fertilizer?
We maintain a stable growth through reasonable capital operations, focus on industry development trends and cutting -edge technologies, and focus on product quality and safety performance.
Phosphate is a naturally occurring mineral that contains the element phosphorus. Phosphate fertilizer is a type of fertilizer that is made from phosphate minerals and is used to provide plants with essential nutrients, particularly phosphorus, for growth and development.
Phosphate fertilizer is made by extracting phosphate minerals from rocks or sedimentary deposits and processing them into a form that can be easily absorbed by plants. This process involves treating the phosphate minerals with acids or other chemicals to make them more soluble and available for plant uptake.
Phosphate fertilizer is an important source of phosphorus for plants, as it helps to promote root growth, seed formation, and overall plant health. It is commonly used in agriculture to increase crop yields and improve soil fertility.
In summary, phosphate is the mineral that contains phosphorus, while phosphate fertilizer is a product made from phosphate minerals that is used to provide plants with essential nutrients, particularly phosphorus, for growth and development.

3.Can phosphate wash be used to make plastic?
Yes, phosphate can be used to make plastic. Phosphate-based plastics, also known as polyphosphates, are a type of thermoplastic polymer that can be used to make a variety of products, including packaging materials, coatings, and adhesives. These plastics are made by polymerizing phosphoric acid or its derivatives, such as phosphoric anhydride, with other monomers. They are known for their high strength, durability, and resistance to heat and chemicals. However, due to concerns about the environmental impact of phosphate mining and production, alternative materials are being developed to replace phosphate-based plastics.
4.In which industries do phosphate wash play an important role?
We are a new phosphate wash manufacturer.
Phosphate is a crucial resource in various industries, making significant contributions to global economies. It is a key ingredient in fertilizers, providing essential nutrients for crop growth and increasing agricultural productivity. Phosphate is also used in the production of animal feed, promoting healthy growth and development in livestock. In addition, it is widely used in the manufacturing of detergents, soaps, and other cleaning products. The pharmaceutical and food industries also heavily rely on phosphate for the production of medicines, nutritional supplements, and food additives. Furthermore, phosphate is an important component in the production of steel and other industrial chemicals. Therefore, phosphate plays a crucial role in agriculture, food production, cleaning, pharmaceuticals, and industrial manufacturing, making it a valuable resource for various industries.

5.How to control the concentration of phosphate wash in water?
Phosphate is an essential nutrient for plant growth and is commonly found in water sources. However, high concentrations of phosphate can lead to eutrophication, causing harm to aquatic ecosystems. Therefore, it is important to control the concentration of phosphate in water. One way to do this is through proper wastewater treatment methods. Municipal treatment plants use techniques such as chemical precipitation and biological nutrient removal to remove excess phosphate from wastewater. Moreover, farmers can also reduce the use of phosphate-rich fertilizers and implement sustainable irrigation practices to prevent further contamination of water sources. Regular monitoring of water quality and implementing strict regulations can also help in controlling phosphate levels. Additionally, educating the public on the harmful effects of excessive phosphate in water can promote individual responsibility in reducing phosphate pollution. By combining these efforts, we can effectively control the concentration of phosphate in water and protect our planet's water resources.
6.Can phosphate wash be used as agricultural conservation agent?
We have established long-term and stable partnerships with our suppliers, so we have great advantages in price and cost and quality assurance.
Yes, phosphate can be used as an agricultural conservation agent. Phosphate is an essential nutrient for plant growth and is commonly used as a fertilizer in agriculture. It helps to promote root growth, increase crop yield, and improve plant health. In addition, phosphate can also act as a soil conservation agent by improving soil structure, reducing erosion, and increasing water retention. However, excessive use of phosphate can lead to environmental issues such as water pollution, so it is important to use it in moderation and follow recommended application rates.

7.What compounds can phosphate wash form?
Phosphate has the ability to form a wide variety of compounds, including phosphate salts, phosphates used in fertilizers, phosphoric acid, and organic phosphates found in living organisms. It also forms important compounds such as DNA and ATP, which are crucial for energy storage and transfer in living organisms. Phosphate compounds are essential for various industrial and agricultural applications, as well as for the functioning of biological systems.
8.phosphate wash What technology is used in making polyphosphate wash?
We have advanced production equipment and technology to meet the needs of customers, and can provide customers with high quality, low priced phosphate wash products.
The technology used in making polyphosphate is typically a chemical process called polymerization. This involves combining monomers (smaller molecules) to form long chains of repeating units, known as polymers. In the case of polyphosphate, the monomers are typically phosphoric acid or phosphates, which are combined to form long chains of phosphate molecules.
The process of polymerization can be carried out using various methods, including solution polymerization, emulsion polymerization, and suspension polymerization. These methods involve mixing the monomers with a catalyst and other additives, and then subjecting the mixture to heat, pressure, or radiation to initiate the polymerization reaction.
Once the polymerization is complete, the resulting polyphosphate can be further processed and modified to meet specific requirements for different applications. This may involve adding other chemicals, blending with other polymers, or shaping the polyphosphate into different forms, such as pellets, sheets, or fibers.

9.What diseases can phosphate wash be used to treat?
We adhere to the principle of quality first and have a complete production quality management system and quality inspection process.
Phosphate, one of the essential mineral components in our body, has been widely used in treating various diseases. It is commonly used in the treatment of osteoporosis, a condition characterized by low bone density and increased risk of fractures. Phosphate is also utilized in the treatment of kidney diseases, including kidney failure and renal tubular acidosis, where it helps to regulate electrolyte balance and maintain healthy kidney function. In addition, phosphate has been shown to be beneficial in managing certain genetic disorders that affect phosphate metabolism, such as hypophosphatemia and familial hypophosphatemic rickets. Furthermore, phosphate is used in the treatment of some inflammatory diseases, such as inflammatory bowel disease, due to its anti-inflammatory properties.
10.What is tripolyphosphate wash?
As one of the phosphate wash market leaders, we are known for innovation and reliability.
Tripolyphosphate is a chemical compound with the formula Na5P3O10. It is a water-soluble salt that is commonly used as a food additive, detergent builder, and water softener. It is also used in industrial applications such as metal cleaning and water treatment. Tripolyphosphate is a white, odorless powder that is stable under normal conditions. It is considered safe for consumption and has a low toxicity.

11.What are the similarities between phosphate wash and sulfates?
Phosphates and sulfates are both types of mineral compounds that contain oxygen. They are commonly found in nature and have various industrial and biological uses. One of the key similarities between these two compounds is that they both contain oxygen atoms in their molecular structure. This allows them to perform similar functions, such as being used as fertilizers in agriculture, as well as being used in detergents and water treatment products. Another similarity is that both phosphates and sulfates are essential for life, as they are important components of DNA and cell membranes. However, they also have their differences, as sulfates are more commonly found in minerals such as copper and iron, while phosphates are found in minerals such as calcite and apatite.
12.Can phosphate wash be used to make batteries?
phosphate wash is not a product only, but also can help you comes to money-making.
Yes, phosphate can be used to make batteries. Phosphate-based batteries, also known as lithium iron phosphate (LiFePO4) batteries, are a type of rechargeable battery that uses phosphate as the cathode material. These batteries are known for their high energy density, long lifespan, and safety compared to other types of batteries. They are commonly used in electric vehicles, solar energy storage systems, and other applications that require high-performance batteries.

13.Will phosphate wash be used in environmental protection projects?
We maintain a certain amount of R&D investment every year and continuously improve operational efficiency to provide better services to our cooperative customers.
Phosphate, a naturally occurring mineral, has been utilized in various industries, such as agriculture and food production, for its highly beneficial properties. With the growing concern over environmental protection, many are wondering if phosphate can also play a role in these initiatives. The answer is a resounding yes. Phosphate has been proven to be effective in several environmental protection projects, such as wastewater treatment and soil remediation. Its ability to bind with heavy metals and other contaminants makes it a valuable tool in cleaning polluted water and soil. Furthermore, its use as a plant fertilizer can reduce the need for harmful chemical fertilizers, promoting sustainable and organic farming practices. As more research is conducted, it is expected that phosphate will continue to contribute to environmental protection efforts in the future.
14.How is phosphate wash extracted?
We continue to improve phosphate wash products and processes to improve efficiency.
Phosphate is typically extracted through open-pit mining, which involves digging a large hole in the ground and removing the layers of phosphate-rich rock. The extracted rock is then crushed and processed to separate the phosphate from other minerals. This process may also involve washing, screening, and flotation to further refine the phosphate. In some cases, underground mining may also be used to extract phosphate deposits.

15.What is anionic phosphate wash?
We actively participate in the phosphate wash industry associations and organization activities. The corporate social responsibility performed well, and the focus of brand building and promotion
Anionic phosphate refers to a negatively charged ion that contains one phosphorus atom and four oxygen atoms, with a chemical formula of PO4^3-. It is commonly found in various compounds, such as phosphates in fertilizers and phospholipids in cell membranes. Anionic phosphate plays important roles in biological processes, such as energy storage and transfer, DNA and RNA synthesis, and bone formation.