Product center

Your location: Home - ProductsProducts

Guizhou SINO-PHOS Chemical Co., Ltd. is a company specializing in the R&D and production of phosphoric acid and phosphates that integrates R&D, design, production and sales. The company has professional technical personnel who are committed to the development, innovation and application of new products, and has international standard phosphoric acid and phosphate raw material production lines. The company produces and supplies phosphate series, condiment series, compound food additive series and other series, with more than 100 kinds of products. The main specifications include industrial grade, food grade, reagent grade, and pharmaceutical grade. It is widely used in food and beverage, dairy, pharmaceutical, water treatment and metal treatment, flame retardant materials, detergents, etc.
Our company currently has an annual production capacity of 30,000 tons of phosphate and 60,000 tons of phosphate. The pass rate reaches 100%, and the annual sales are approximately 20 billion yuan. The products sell well all over the country and are exported to more than 180 countries and regions, including Samoa,Congo, Republic of the,Pakistan,Suriname,Mayotte, providing one-stop services to nearly a thousand food and industrial customers around the world. The company's image and product quality enjoy a good reputation in domestic and foreign markets and are favored by customers.
Classification | Phosphoric Acid |
Place of Origin | Guizhou, China |
Other Names | PA 85% |
MF | 00 |
EINECS No. | 200-662-2 |
Grade Standard | Industrial Grade |
Appearance | white powder |
Application | Chemical additives and cleaning |
Brand Name | SINO-PHOS |
Model Number | zy |
Product name | phosphoric acid |
Grade | Industrail Grade |
Packaging Details | 18kg/bag 51bag/pellet |
Supply Ability | 103475 Metric Ton/Metric Tons per Week |
Quantity (metric tons) | > 99197 |
Lead time (days) | 14 |
phosphoric acid polymerization bearings FAQs Guide
phosphoric acid polymerization is a colorless, odorless inorganic acid with the chemical formula H3PO4. It has a wide range of uses in various industries, including food and beverage, fertilizer production, and industrial cleaning. As a food additive, it is commonly used as a flavor enhancer and preservative. In fertilizer production, it serves as a source of phosphorous, an essential nutrient for plant growth. In industrial cleaning, it is used as an effective descaler for metal surfaces. Highly versatile and effective, phosphoric acid polymerization is a vital ingredient in many products and processes.
2.Can phosphoric acid polymerization be used in the treatment of osteoporosis?
3.What is the relationship between phosphoric acid polymerization and living organisms?
4.What is the molecular formula of phosphoric acid polymerization?
5.What compounds are produced when phosphoric acid polymerization reacts with oxides?
6.What is the relationship between phosphoric acid polymerization and beverages?
7.Can phosphoric acid polymerization be dangerous?
8.What substances does phosphoric acid polymerization react with?
9.Is phosphoric acid polymerization biodegradable?
10.What are the uses of phosphoric acid polymerization?
11.In which industries is phosphoric acid polymerization used?
12.What does the reaction of phosphoric acid polymerization with water produce?
13.What is the hazard of phosphoric acid polymerization in fire?
14.What is phosphoric acid polymerization?
15.Is phosphoric acid polymerization harmful to the environment?
1.What compounds are produced when phosphoric acid polymerization reacts with phosphate?
We attach importance to the innovation ability and team spirit of employees, have advanced R & D facilities and laboratories, and have a good quality management system.
When phosphoric acid reacts with phosphate, the following compounds are produced:
1. Dihydrogen phosphate (H2PO4-)
2. Monohydrogen phosphate (HPO42-)
3. Phosphate (PO43-)
4. Water (H2O)
2.Can phosphoric acid polymerization be used in the treatment of osteoporosis?
Phosphoric acid has been studied as a potential treatment for osteoporosis, a condition in which bones become weak and brittle. It is believed that the acid can help in the absorption of calcium and prevent bone loss. However, further research is needed to confirm its effectiveness in treating this condition.

3.What is the relationship between phosphoric acid polymerization and living organisms?
We focus on teamwork and communication to achieve common goals, We attach great importance to this detail.
Phosphoric acid is an important component in living organisms as it is a key element in the formation of DNA, RNA, and ATP (adenosine triphosphate), which are essential for cellular processes and energy production. It is also involved in the regulation of pH levels in cells and plays a role in the metabolism of carbohydrates, proteins, and fats. In addition, phosphoric acid is found in many food sources and is used as a preservative and flavoring agent, making it a common part of the human diet. However, excessive exposure to phosphoric acid can be harmful to living organisms, causing damage to tissues and organs.
4.What is the molecular formula of phosphoric acid polymerization?
We have been working hard to improve service quality and meet customer needs.
The molecular formula of phosphoric acid is H3PO4.

5.What compounds are produced when phosphoric acid polymerization reacts with oxides?
We are committed to providing personalized solutions and established long -term strategic cooperative relationships with customers.
When phosphoric acid reacts with oxides, it produces a group of chemicals called phosphates. This reaction results in the formation of different types of phosphates, such as monophosphates, diphosphates, and triphosphates. These compounds are important in various industrial and agricultural applications, such as fertilizers, detergents, and food additives. Phosphates also play a crucial role in biological processes, such as metabolism and cellular signaling. They are essential for the growth and development of plants and animals, making phosphoric acid an essential component in many industries and scientific fields.
6.What is the relationship between phosphoric acid polymerization and beverages?
I have a comprehensive after -sales service system, which can pay attention to market trends in time and adjust our strategy in a timely manner.
Phosphoric acid is commonly used as an additive in beverages, particularly in soft drinks and energy drinks. It is added to give a tangy or sour taste and to act as a preservative. Phosphoric acid also helps to balance the sweetness of the drink and can enhance the flavor of certain ingredients. However, excessive consumption of phosphoric acid has been linked to negative health effects, such as tooth decay and bone loss. Therefore, the use of phosphoric acid in beverages is a topic of debate and regulation in the food and beverage industry.

7.Can phosphoric acid polymerization be dangerous?
Phosphoric acid is considered relatively safe, but it can be hazardous in its concentrated form. It is corrosive and can cause severe burns if it comes in contact with the skin or eyes. As with any chemical, it is important to handle phosphoric acid with caution and follow proper safety measures.
8.What substances does phosphoric acid polymerization react with?
We should perform well in market competition, and the prices of phosphoric acid polymerization products have a great competitive advantage.
Phosphoric acid can react with a variety of substances, including:
Phosphoric acid is a colorless and odorless mineral acid that is commonly used in the production of fertilizers, food additives, and beverages. It is a strong acid that can react with various substances, including metals, bases, and compounds containing hydroxyl groups. When phosphoric acid comes into contact with metals, it can produce hydrogen gas and form metal phosphate salts. When mixed with bases, such as sodium hydroxide, it forms water and corresponding salts. In addition, phosphoric acid also reacts with compounds containing hydroxyl groups, such as alcohols, to form esters. This versatile nature of phosphoric acid makes it an essential component in many industrial and commercial processes.

9.Is phosphoric acid polymerization biodegradable?
We have established long-term and stable partnerships with our suppliers, so we have great advantages in price and cost and quality assurance.
No, phosphoric acid is not biodegradable. It is a strong acid and does not break down easily in the environment. It can be diluted and neutralized, but it will still persist in the environment for a long time.
10.What are the uses of phosphoric acid polymerization?
Phosphoric acid has various industrial applications, such as in the production of fertilizers, detergents, and food additives. It is also used in the treatment of water and metal surfaces, as a catalyst in chemical reactions, and as an ingredient in beverages and food products.

11.In which industries is phosphoric acid polymerization used?
We continue to improve phosphoric acid polymerization products and processes to improve efficiency.
Phosphoric acid is widely used in various industries, including food and beverage, agriculture, pharmaceutical, and chemical manufacturing. It is commonly used as a food additive and flavoring agent, as well as a nutrient source in fertilizers for plants. In addition, it is an essential ingredient in the production of various medicines, such as antibiotics, antacids, and toothpaste. In chemical manufacturing, it is used as a catalyst and solvent in the production of synthetic resins, detergents, and plastics. Moreover, it has various industrial applications, such as in metal pickling, water treatment, and electronic manufacturing. With its versatile properties and uses, phosphoric acid plays an important role in many industries and is an integral part of our daily lives.
12.What does the reaction of phosphoric acid polymerization with water produce?
The reaction of phosphoric acid (H3PO4) with water (H2O) produces a solution of phosphoric acid in water. This solution is acidic and contains H+ ions from the dissociation of the acid. The reaction can be represented by the following equation:
H3PO4 + H2O → H+ + H2PO4- + H2O
The H+ ions combine with water molecules to form hydronium ions (H3O+), which give the solution its acidic properties. The H2PO4- ions also contribute to the acidity of the solution. Overall, the reaction produces a solution that is highly acidic and can be used in various industrial and laboratory applications.

13.What is the hazard of phosphoric acid polymerization in fire?
We operate our phosphoric acid polymerization business with integrity and honesty.
Phosphoric acid is a corrosive substance and can cause severe burns if it comes into contact with skin or eyes. In a fire, it can release toxic fumes, such as phosphorus oxides, which can irritate the respiratory system and cause difficulty breathing. It can also react with other chemicals and materials, potentially causing explosions or other hazardous reactions.
14.What is phosphoric acid polymerization?
We focus on providing high phosphoric acid polymerization quality products and services.
Phosphoric acid is a mineral acid with the chemical formula H3PO4. It is a colorless, odorless, and highly corrosive liquid that is commonly used in the production of fertilizers, detergents, and food and beverages. It is also used in the production of pharmaceuticals, metal treatments, and water treatment. Phosphoric acid is an important source of phosphorus, an essential nutrient for plants and animals. It is also used as an acidifying agent in soft drinks and other food products.

15.Is phosphoric acid polymerization harmful to the environment?
We enjoy high authority and influence in the industry and continue to innovate products and service models.
Phosphoric acid can be harmful to the environment if it is released into the environment in large quantities. It is considered a hazardous substance and can cause harm to aquatic life if it enters water bodies. It can also contribute to acid rain and damage soil and vegetation if it is released into the air.
Additionally, the production of phosphoric acid can also have negative impacts on the environment, such as air and water pollution, and the depletion of natural resources. Proper handling and disposal of phosphoric acid are important to minimize its potential harm to the environment.