Product center

Your location: Home - ProductsProducts

Guizhou SINO-PHOS Chemical Co., Ltd. focuses on the chemical industry and has various certificates for hazardous chemicals and complete import and export qualifications. The company has more than 100 cooperative factories in China, and its products cover a wide range of organic and inorganic chemicals, such as phosphoric acid, sodium tripolyphosphate, sodium hexametaphosphate, sodium tripolyphosphate, sodium pyrophosphate, etc. We provide COA, MSDS, TDS and other free information to facilitate your product selection.
Our products are exported to more than 40 countries in North America, Europe, and Mali,Angola,Argentina,Estonia,Antigua and Barbuda,Monaco. SINO-PHOS cooperates with a number of transportation companies, including sea transportation, air transportation, and land transportation. Maritime transportation covers major domestic ports: Shanghai, Qingdao, Tianjin, Dalian, Ningbo, etc. It has sufficient storage space and is suitable for the transportation of goods and products of various specifications. Special lines eliminate long waits for orders. The company's employees have many years of experience in chemical import and export and can provide you with better services.
Type | DIAMMONIUM PHOSPHATE |
Place of Origin | Guizhou, China |
Classification | pka sodium phosphate |
Other Names | DAP |
MF | NH4H2PO4 |
EINECS No. | Other |
Grade Standard | Agriculture Grade, Food Grade, Industrial Grade |
Appearance | white powder |
Application | Food Grade;Agriculture Grade;Industrial Grade |
Brand Name | ydaway |
Model Number | food grade |
Supply Ability | 8507 Ton/Tons per Month |
Quantity (kilograms) | > 10332663 |
Lead time (days) | 16 |
pka sodium phosphate bearings FAQs Guide
pka sodium phosphate, a type of natural mineral often found in rocks, is widely recognized for its significant role in plant and animal growth. As a necessary element for all living organisms, pka sodium phosphate has become an essential component in various industries, including agriculture, food production, and manufacturing. With our advanced technology and expertise, we have developed a series of high-quality pka sodium phosphate products that cater to different needs in the market. Our wide range of solutions not only provides essential nutrients for crops and livestock but also supports the development of sustainable and environmentally friendly processes. Keep reading to learn more about our pka sodium phosphate products and how they can benefit your business.
2.How to test the pka sodium phosphate content in food?
3.What effects does pka sodium phosphate have on human health?
4.What is the relationship between pka sodium phosphate and pka sodium phosphate fertilizer?
5.What is the role of catalysts in the pka sodium phosphate industry?
6.Are pka sodium phosphate common on Earth?
7.How to control the concentration of pka sodium phosphate in water?
8.How to distinguish pka sodium phosphate?
9.Are pka sodium phosphate harmful to animals?
10.What is the difference between pka sodium phosphate and diammonium pka sodium phosphate?
11.What pka sodium phosphate are produced during denitrification?
12.What is the global production of pka sodium phosphate?
13.What is tripolypka sodium phosphate?
14.What by-products are produced during the production of pka sodium phosphate?
1.What is the difference between pka sodium phosphate and organic fertilizers?
Phosphate and organic fertilizers are two commonly used types of fertilizers in agriculture, but they differ in their origin, composition, and benefits. Phosphate fertilizers are made from mined rock phosphate and contain high levels of phosphorus, an essential nutrient for plant growth. On the other hand, organic fertilizers are derived from natural sources such as animal manure, compost, and crop residues. They are rich in organic matter and micronutrients, which help improve soil health and increase crop yields. While phosphate fertilizers show immediate results, organic fertilizers provide a slow release of nutrients, leading to long-term soil fertility. Additionally, organic fertilizers are more environmentally friendly and sustainable, while phosphate fertilizers can have negative impacts on the environment if overused.
2.How to test the pka sodium phosphate content in food?
We have a first -class management team, and we pay attention to teamwork to achieve common goals.
There are several methods for testing the phosphate content in food. One common method is to use a colorimetric test that relies on the reaction between phosphate ions and a reagent solution. This test produces a color change that can be compared to a color chart to determine the level of phosphate present in the food sample. Another method is to use ion chromatography, which involves separating and quantifying the different ions present in the food sample. This method provides a more precise measurement of phosphate levels. Additionally, some food manufacturers may use in-house laboratory testing or send samples to external laboratories for more comprehensive analysis. No matter the method used, it is important to follow proper protocols and use reliable equipment to ensure accurate results. Regular testing of phosphate levels in food is crucial for maintaining food safety and ensuring compliance with regulatory standards.
3.What effects does pka sodium phosphate have on human health?
Phosphate is an essential nutrient for human health, as it plays a vital role in many functions of the body. It is a key component in the formation of bones, teeth, and cell membranes. However, excessive intake of phosphate can also have negative effects on human health. Consuming too much phosphate can lead to an imbalance in the body's mineral levels, which can cause problems such as kidney damage, heart disease, and weakened bones. Additionally, high levels of phosphate in the body have been linked to an increased risk of cardiovascular disease, diabetes, and even certain types of cancer. Therefore, it is important to maintain a balanced and appropriate intake of phosphate in order to maintain good overall health.
4.What is the relationship between pka sodium phosphate and pka sodium phosphate fertilizer?
We maintain a stable growth through reasonable capital operations, focus on industry development trends and cutting -edge technologies, and focus on product quality and safety performance.
Phosphate is a naturally occurring mineral that contains the element phosphorus. Phosphate fertilizer is a type of fertilizer that is made from phosphate minerals and is used to provide plants with essential nutrients, particularly phosphorus, for growth and development.
Phosphate fertilizer is made by extracting phosphate minerals from rocks or sedimentary deposits and processing them into a form that can be easily absorbed by plants. This process involves treating the phosphate minerals with acids or other chemicals to make them more soluble and available for plant uptake.
Phosphate fertilizer is an important source of phosphorus for plants, as it helps to promote root growth, seed formation, and overall plant health. It is commonly used in agriculture to increase crop yields and improve soil fertility.
In summary, phosphate is the mineral that contains phosphorus, while phosphate fertilizer is a product made from phosphate minerals that is used to provide plants with essential nutrients, particularly phosphorus, for growth and development.
5.What is the role of catalysts in the pka sodium phosphate industry?
We have established a good reputation and reliable partnerships within the pka sodium phosphate industry.
Catalysts are an essential component in the phosphate industry, playing a key role in the production of vital fertilizers and other phosphates for industrial use. They serve as a facilitator, accelerating the chemical reactions involved in phosphate production, thereby increasing efficiency and reducing costs. These catalysts also help improve the quality and purity of the final product, ensuring that it meets regulatory standards. In addition, they enable the use of more sustainable and environmentally friendly processes, making the phosphate industry more efficient and sustainable. Without catalysts, the production of phosphates would be significantly slower and more expensive, making them a crucial element in the industry.

6.Are pka sodium phosphate common on Earth?
We continuously upgrade our skills and knowledge to adapt to changing pka sodium phosphate market needs.
Yes, phosphates are common on Earth. They are found in rocks, soils, and water, and are essential for life as they are a key component of DNA, RNA, and ATP (adenosine triphosphate). Phosphates are also used in fertilizers, detergents, and other industrial products.
7.How to control the concentration of pka sodium phosphate in water?
Phosphate is an essential nutrient for plant growth and is commonly found in water sources. However, high concentrations of phosphate can lead to eutrophication, causing harm to aquatic ecosystems. Therefore, it is important to control the concentration of phosphate in water. One way to do this is through proper wastewater treatment methods. Municipal treatment plants use techniques such as chemical precipitation and biological nutrient removal to remove excess phosphate from wastewater. Moreover, farmers can also reduce the use of phosphate-rich fertilizers and implement sustainable irrigation practices to prevent further contamination of water sources. Regular monitoring of water quality and implementing strict regulations can also help in controlling phosphate levels. Additionally, educating the public on the harmful effects of excessive phosphate in water can promote individual responsibility in reducing phosphate pollution. By combining these efforts, we can effectively control the concentration of phosphate in water and protect our planet's water resources.
8.How to distinguish pka sodium phosphate?
We have the leading technology and innovation capabilities, and attach importance to employee training and development, and provide promotion opportunities.
Phosphate, a chemical compound containing the element phosphorus, is commonly found in many materials such as fertilizers, detergents, and food. However, it is important to be able to distinguish phosphate from other compounds due to its potential environmental and health impacts. One way to do this is by testing for the presence of phosphates using specialized equipment, such as a spectrophotometer, which measures the absorption of light by the compound. Additionally, one can also use chemical tests, such as adding molybdate reagent to a sample, which will produce a yellow color if phosphates are present. Another method is by calculating the amount of phosphate based on the weight of a sample and the percentage of phosphorus in the compound. By using these techniques, one can accurately identify and quantify phosphate, allowing for proper handling and disposal to prevent harm to the environment and human health.
9.Are pka sodium phosphate harmful to animals?
We should enjoy a good reputation in the industry, and we can increase the added value of the products of cooperative customers through technological innovation.
Phosphates are essential nutrients for animals and are not harmful in small amounts. However, excessive levels of phosphates in the environment can lead to eutrophication, which can harm aquatic animals by causing algal blooms and depleting oxygen levels in the water. In addition, high levels of phosphates in animal feed can lead to health issues such as kidney damage and bone disorders. It is important to monitor and regulate phosphate levels in the environment and in animal feed to ensure the health and well-being of animals.
10.What is the difference between pka sodium phosphate and diammonium pka sodium phosphate?
We operate our pka sodium phosphate business with integrity and honesty.
Phosphate refers to any compound containing the phosphate ion (PO4^3-), while diammonium phosphate (DAP) specifically refers to a compound with the chemical formula (NH4)2HPO4. DAP is a type of phosphate fertilizer commonly used in agriculture, while phosphate can refer to a variety of compounds with different uses and properties.

11.What pka sodium phosphate are produced during denitrification?
No phosphate is produced during denitrification. Denitrification is a process in which nitrate (NO3-) is converted into nitrogen gas (N2) by bacteria, and does not involve the production of phosphate.
12.What is the global production of pka sodium phosphate?
We are committed to providing personalized solutions and established long -term strategic cooperative relationships with customers.
According to the United States Geological Survey, the global production of phosphate in 2019 was approximately 47 million metric tons. The top producers of phosphate were China, Morocco, and the United States.
13.What is tripolypka sodium phosphate?
As one of the pka sodium phosphate market leaders, we are known for innovation and reliability.
Tripolyphosphate is a chemical compound with the formula Na5P3O10. It is a water-soluble salt that is commonly used as a food additive, detergent builder, and water softener. It is also used in industrial applications such as metal cleaning and water treatment. Tripolyphosphate is a white, odorless powder that is stable under normal conditions. It is considered safe for consumption and has a low toxicity.
14.What by-products are produced during the production of pka sodium phosphate?
Our company has many years of pka sodium phosphate experience and expertise.
During the production process of phosphate, various by-products are produced. These include sulfuric acid, which is used in the initial step of phosphate production, as well as gypsum, which is a by-product of the neutralization process. Other by-products include fluoride gases, which are created during the acidulation process, and phosphogypsum, a solid waste produced during the production of phosphoric acid. Additionally, various heavy metals, such as cadmium, nickel, and lead, can also be produced depending on the type of phosphate ore being processed. These by-products require proper handling and disposal to minimize their impact on the environment.