Product center

Your location: Home - ProductsProducts

Guizhou SINO-PHOS Chemical Co., Ltd. specializes in the production of phosphoric acid and phosphates. Our company's main products include phosphoric acid, sodium tripolyphosphate, sodium hexametaphosphate, sodium tripophosphate, sodium pyrophosphate, etc. At present, it has formed an annual production scale of 30,000 tons of phosphate and 60,000 tons of phosphate. In 2009, the company passed ISO9001 international quality system certification.
All SINO-PHOS products are qualified, laying a good foundation for sustainable development. And it was successfully put into trial production in July 2009. Using continuous drying and dehydration technology, it is environmentally friendly, energy-saving and stable. Wire. Moreover, the electroplated TKPP produced by this production line meets industry standards and can replace imported products. SINO-PHOS focuses on the phosphate industry. Our products have entered many foreign countries such as Maldives,Australia,Libya,Moldova, providing customers with high-quality products and reasonable prices.
Type | Disodium Phosphate |
Place of Origin | Guizhou,china |
Classification | Phosphate |
Other Names | Sodium Phosphate, Dibasic |
MF | Na2HPO4 |
EINECS No. | 231-448-7 |
Grade Standard | Industrial Grade, Reagent Grade |
Appearance | White Powder |
Application | emulgator,etc |
Brand Name | SINO-PHOS |
Model Number | / |
Product name | Sodium Phosphate, Dibasic |
Appearance | White powder |
Content Na2HPO4,( On dry basis),w/% | ≥91 |
Arsenic(As),mg/kg | ≤3 |
Heavy metal(as Pb),mg/kg | ≤10 |
Lead(Pb),mg/kg | ≤3 |
Fluorides(as F),mg/kg | ≤40 |
Insoluble substances,w/% | ≤0.2 |
Loss on drying,w/% | ≤5 |
Packaging Details | 5g/10g/50g/105g/500g/1kg/Bottle |
Supply Ability | 452 Kilogram/Kilograms per Month |
Quantity (grams) | > 208 |
Lead time (days) | 19 |
ruxolitinib phosphate bearings FAQs Guide ruxolitinib phosphate, a type of natural mineral often found in rocks, is widely recognized for its significant role in plant and animal growth. As a necessary element for all living organisms, ruxolitinib phosphate has become an essential component in various industries, including agriculture, food production, and manufacturing. With our advanced technology and expertise, we have developed a series of high-quality ruxolitinib phosphate products that cater to different needs in the market. Our wide range of solutions not only provides essential nutrients for crops and livestock but also supports the development of sustainable and environmentally friendly processes. Keep reading to learn more about our ruxolitinib phosphate products and how they can benefit your business.
2.How are the functions and structure of ruxolitinib phosphate related?
3.Will ruxolitinib phosphate be used in environmental protection projects?
4.What is the chemical structure of ruxolitinib phosphate?
5.Are ruxolitinib phosphate harmful to animals?
6.What is tripolyruxolitinib phosphate?
7.What are the common forms of ruxolitinib phosphate?
8.Can ruxolitinib phosphate be used to make building materials?
9.What are the production processes for ruxolitinib phosphate?
10.What effects does ruxolitinib phosphate have on human health?
11.How to control the concentration of ruxolitinib phosphate in water?
12.What compounds can ruxolitinib phosphate form?
13.What are some common uses of ruxolitinib phosphate?
14.How to safely store ruxolitinib phosphate?
15.How to test the ruxolitinib phosphate content in food?
1.What is ruxolitinib phosphate?
I have a comprehensive after -sales service system, which can pay attention to market trends in time and adjust our strategy in a timely manner.
Phosphate is a chemical compound that contains the element phosphorus and oxygen. It is commonly found in nature as a mineral, and is an essential nutrient for plants and animals. Phosphate is also used in various industrial processes, such as in fertilizers, detergents, and food additives. In its various forms, phosphate plays a crucial role in many biological and chemical processes, including energy production, DNA and RNA synthesis, and bone formation.
2.How are the functions and structure of ruxolitinib phosphate related?
Phosphate is an important chemical compound that is essential for various biological processes and is found in many minerals, soils, and living cells. Its functions are closely related to its unique structure, containing one central phosphorus atom bonded to four oxygen atoms. This structure allows phosphate to act as a versatile molecule, serving as a structural component in molecules like DNA and RNA, an energy source in the form of ATP, and a regulatory substance in biochemical reactions. Additionally, its structure also allows it to form strong bonds with other molecules, making it vital for cellular communication and signaling. This close relationship between the functions and structure of phosphate highlights its significance in maintaining the delicate balance and efficiency of various biological systems.

3.Will ruxolitinib phosphate be used in environmental protection projects?
We maintain a certain amount of R&D investment every year and continuously improve operational efficiency to provide better services to our cooperative customers.
Phosphate, a naturally occurring mineral, has been utilized in various industries, such as agriculture and food production, for its highly beneficial properties. With the growing concern over environmental protection, many are wondering if phosphate can also play a role in these initiatives. The answer is a resounding yes. Phosphate has been proven to be effective in several environmental protection projects, such as wastewater treatment and soil remediation. Its ability to bind with heavy metals and other contaminants makes it a valuable tool in cleaning polluted water and soil. Furthermore, its use as a plant fertilizer can reduce the need for harmful chemical fertilizers, promoting sustainable and organic farming practices. As more research is conducted, it is expected that phosphate will continue to contribute to environmental protection efforts in the future.
4.What is the chemical structure of ruxolitinib phosphate?
We have a professional team that is committed to the innovation and development of ruxolitinib phosphate.
The chemical structure of phosphate is a polyatomic ion with the chemical formula PO4^3-. It consists of one phosphorus atom bonded to four oxygen atoms in a tetrahedral arrangement. The phosphorus atom is in the center, with three single bonds to oxygen atoms and one double bond to another oxygen atom. The overall charge of the ion is negative three.

5.Are ruxolitinib phosphate harmful to animals?
We should enjoy a good reputation in the industry, and we can increase the added value of the products of cooperative customers through technological innovation.
Phosphates are essential nutrients for animals and are not harmful in small amounts. However, excessive levels of phosphates in the environment can lead to eutrophication, which can harm aquatic animals by causing algal blooms and depleting oxygen levels in the water. In addition, high levels of phosphates in animal feed can lead to health issues such as kidney damage and bone disorders. It is important to monitor and regulate phosphate levels in the environment and in animal feed to ensure the health and well-being of animals.
6.What is tripolyruxolitinib phosphate?
As one of the ruxolitinib phosphate market leaders, we are known for innovation and reliability.
Tripolyphosphate is a chemical compound with the formula Na5P3O10. It is a water-soluble salt that is commonly used as a food additive, detergent builder, and water softener. It is also used in industrial applications such as metal cleaning and water treatment. Tripolyphosphate is a white, odorless powder that is stable under normal conditions. It is considered safe for consumption and has a low toxicity.

7.What are the common forms of ruxolitinib phosphate?
We have flexible production capacity. Whether you are large orders or small orders, you can produce and release goods in a timely manner to meet customer needs.
1. Calcium phosphate: This is the most common form of phosphate found in nature and is the main component of bones and teeth.
2. Sodium phosphate: This form of phosphate is commonly used as a food additive and is also found in some medications.
3. Potassium phosphate: This form of phosphate is used as a fertilizer and is also found in some food products.
4. Magnesium phosphate: This form of phosphate is found in the body and is important for bone health and energy production.
5. Ammonium phosphate: This form of phosphate is used as a fertilizer and is also found in some cleaning products.
6. Dicalcium phosphate: This form of phosphate is commonly used as a dietary supplement and is also found in some toothpastes.
7. Monoammonium phosphate: This form of phosphate is used as a fertilizer and is also found in some fire extinguishers.
8. Tricalcium phosphate: This form of phosphate is used as a food additive and is also found in some toothpastes and cosmetics.
9. Disodium phosphate: This form of phosphate is used as a food additive and is also found in some cleaning products.
10. Tetrasodium pyrophosphate: This form of phosphate is used as a food additive and is also found in some toothpastes and detergents.
8.Can ruxolitinib phosphate be used to make building materials?
We adhere to the principle of integrity and transparency, and establish long -term relationships with partners, and we attach great importance to this detail.
Yes, phosphate can be used to make building materials such as cement, plaster, and drywall. Phosphate is commonly used as a binding agent in these materials, providing strength and durability. It is also used as a flame retardant in some building materials. Additionally, phosphate can be used as a fertilizer in the production of building materials made from natural materials such as wood and bamboo.

9.What are the production processes for ruxolitinib phosphate?
We focus on teamwork and communication to achieve common goals, We attach great importance to this detail.
Phosphate, also known as phosphate rock, is a mineral that is typically found in sedimentary rocks. It is an essential nutrient for plant growth and is commonly used in fertilizer production. The production processes for phosphate involve mining and extraction of the mineral from ore deposits, followed by washing, crushing, and grinding to create a powdered form. The powdered form is then treated with sulfuric acid to produce phosphoric acid, which is used as a key ingredient in most fertilizers. Additional steps may be taken to refine the phosphoric acid into a more concentrated form, or to produce various types of phosphate fertilizers. The production of phosphate is an important industry worldwide, providing essential nutrients for plants and helping to increase crop yields.
10.What effects does ruxolitinib phosphate have on human health?
Phosphate is an essential nutrient for human health, as it plays a vital role in many functions of the body. It is a key component in the formation of bones, teeth, and cell membranes. However, excessive intake of phosphate can also have negative effects on human health. Consuming too much phosphate can lead to an imbalance in the body's mineral levels, which can cause problems such as kidney damage, heart disease, and weakened bones. Additionally, high levels of phosphate in the body have been linked to an increased risk of cardiovascular disease, diabetes, and even certain types of cancer. Therefore, it is important to maintain a balanced and appropriate intake of phosphate in order to maintain good overall health.

11.How to control the concentration of ruxolitinib phosphate in water?
Phosphate is an essential nutrient for plant growth and is commonly found in water sources. However, high concentrations of phosphate can lead to eutrophication, causing harm to aquatic ecosystems. Therefore, it is important to control the concentration of phosphate in water. One way to do this is through proper wastewater treatment methods. Municipal treatment plants use techniques such as chemical precipitation and biological nutrient removal to remove excess phosphate from wastewater. Moreover, farmers can also reduce the use of phosphate-rich fertilizers and implement sustainable irrigation practices to prevent further contamination of water sources. Regular monitoring of water quality and implementing strict regulations can also help in controlling phosphate levels. Additionally, educating the public on the harmful effects of excessive phosphate in water can promote individual responsibility in reducing phosphate pollution. By combining these efforts, we can effectively control the concentration of phosphate in water and protect our planet's water resources.
12.What compounds can ruxolitinib phosphate form?
Phosphate has the ability to form a wide variety of compounds, including phosphate salts, phosphates used in fertilizers, phosphoric acid, and organic phosphates found in living organisms. It also forms important compounds such as DNA and ATP, which are crucial for energy storage and transfer in living organisms. Phosphate compounds are essential for various industrial and agricultural applications, as well as for the functioning of biological systems.

13.What are some common uses of ruxolitinib phosphate?
We pay attention to the introduction and training of talents, scientifically regulate the management system, and focus on cultural construction and team cohesion.
1. Fertilizers: Phosphate is a key ingredient in many fertilizers, as it provides essential nutrients for plant growth and development.
2. Food and beverage industry: Phosphate is used as a food additive in many processed foods and beverages, such as soft drinks, cheese, and baked goods. It helps to improve texture, flavor, and shelf life.
3. Water treatment: Phosphate is used in water treatment to prevent the formation of scale and corrosion in pipes and equipment.
4. Detergents: Phosphate is a common ingredient in laundry and dishwashing detergents, as it helps to soften water and improve the cleaning efficiency.
5. Animal feed: Phosphate is added to animal feed to provide essential minerals for livestock and poultry.
6. Industrial applications: Phosphate is used in various industrial processes, such as metal finishing, ceramics, and detergents.
7. Pharmaceuticals: Phosphate is used in the production of medicines and supplements, such as calcium phosphate for bone health.
8. Flame retardants: Phosphate compounds are used as flame retardants in plastics, textiles, and other materials.
9. Construction materials: Phosphate is used in the production of cement, drywall, and other construction materials.
10. Energy production: Phosphate is used in the production of batteries for energy storage and in the production of biofuels.
14.How to safely store ruxolitinib phosphate?
We pay attention to employee development and benefits, and provide a good working environment in order to improve the efficiency of employees and improve the quality management of ruxolitinib phosphate products.
Storing phosphate properly is crucial for safety and environmental reasons. Firstly, ensure that the storage area is dry and well-ventilated to prevent any moisture build-up, which can cause the phosphate to become unstable and potentially combustible. Secondly, make sure to store it away from any sources of heat or open flames, as phosphate can react violently with these. Additionally, it is important to store phosphate away from other chemicals or materials that it could potentially react with. Proper labeling and segregation of storage containers is recommended to avoid any accidental mixing. It is also recommended to regularly inspect and maintain storage containers to prevent any leaks or spills. Finally, always follow the recommended storage instructions from the manufacturer to ensure safe handling and storage of phosphate.

15.How to test the ruxolitinib phosphate content in food?
We have a first -class management team, and we pay attention to teamwork to achieve common goals.
There are several methods for testing the phosphate content in food. One common method is to use a colorimetric test that relies on the reaction between phosphate ions and a reagent solution. This test produces a color change that can be compared to a color chart to determine the level of phosphate present in the food sample. Another method is to use ion chromatography, which involves separating and quantifying the different ions present in the food sample. This method provides a more precise measurement of phosphate levels. Additionally, some food manufacturers may use in-house laboratory testing or send samples to external laboratories for more comprehensive analysis. No matter the method used, it is important to follow proper protocols and use reliable equipment to ensure accurate results. Regular testing of phosphate levels in food is crucial for maintaining food safety and ensuring compliance with regulatory standards.