Product center

Your location: Home - ProductsProducts

Guizhou SINO-PHOS Chemical Co., Ltd. is a company specializing in the production and sales of phosphate chemical products, headquartered in Guizhou, China. Since the establishment of the company, we have been committed to the research, development and production of phosphoric acid and phosphates, providing the highest quality chemical solutions to customers in various industries around the world.
Our main products include phosphoric acid, sodium tripolyphosphate, sodium hexametaphosphate, sodium tripophosphate, sodium pyrophosphate, etc. SINO-PHOS produces and tests products in strict accordance with international quality standards to ensure product purity and quality. Provide customers with better products and services. These products are very popular in Mauritania,United Kingdom,Holy See (Vatican City),Sudan, the United States and Japan. Won high praise from customers.
Type | Disodium phosphate |
Place of Origin | Guizhou, China |
Classification | Phosphate |
Other Names | Dibasic Sodium Phosphate |
MF | Na2HPO4.2H2O |
EINECS No. | 231-448-7 |
Grade Standard | Food Grade |
Appearance | white cystal |
Application | Food ingredients |
Brand Name | SINO-PHOS |
Model Number | BYPH-12 |
Product Name | Disodium Phosphate |
Grade | Food Garde |
Density | 1.52 |
Insoluble | Alcohol |
Soluble | In water |
Molecular weight | 177.99 |
PH (1% aqueous solution) | 8.8-9.2 |
Executive Standard | GB25568-2010 |
Pallet | Based on buyer's requirment |
Shelf life | 2 Years Proper Storage |
Packaging Details | 18KG/43KG/955KG |
Supply Ability | 2515753 Kilogram/Kilograms per Year |
Quantity (metric tons) | > 187 |
Lead time (days) | 24 |
sugar phosphate dna bearings FAQs Guide
sugar phosphate dna, a type of natural mineral often found in rocks, is widely recognized for its significant role in plant and animal growth. As a necessary element for all living organisms, sugar phosphate dna has become an essential component in various industries, including agriculture, food production, and manufacturing. With our advanced technology and expertise, we have developed a series of high-quality sugar phosphate dna products that cater to different needs in the market. Our wide range of solutions not only provides essential nutrients for crops and livestock but also supports the development of sustainable and environmentally friendly processes. Keep reading to learn more about our sugar phosphate dna products and how they can benefit your business.
2.What is the relationship between sugar phosphate dna and calcium?
3.What measures does sugar phosphate dna take to protect the environment?
4.What foods contain sugar phosphate dna?
5.What are the uses of sugar phosphate dna in the pharmaceutical industry?
6.What is the role of catalysts in the sugar phosphate dna industry?
7.How is sugar phosphate dna extracted?
8.What impact do sugar phosphate dna have on the environment?
9.What compounds can sugar phosphate dna form?
10.What is sugar phosphate dna?
11.How to use sugar phosphate dna safely?
12.How to distinguish sugar phosphate dna?
13.What are the advantages of combining sugar phosphate dna and organic fertilizers?
1.Can sugar phosphate dna be used to make plastic?
Yes, phosphate can be used to make plastic. Phosphate-based plastics, also known as polyphosphates, are a type of thermoplastic polymer that can be used to make a variety of products, including packaging materials, coatings, and adhesives. These plastics are made by polymerizing phosphoric acid or its derivatives, such as phosphoric anhydride, with other monomers. They are known for their high strength, durability, and resistance to heat and chemicals. However, due to concerns about the environmental impact of phosphate mining and production, alternative materials are being developed to replace phosphate-based plastics.
2.What is the relationship between sugar phosphate dna and calcium?
As one of the top sugar phosphate dna manufacturers in China, we take this very seriously.
Phosphate and calcium are essential minerals in the human body and they are closely related in terms of their functions and interactions. Both of them play important roles in maintaining strong bones, teeth and overall skeletal health. Calcium is primarily responsible for providing structural support and strength in bones, while phosphate helps to regulate the calcium levels in the body. In addition, both minerals are vital for proper muscle function, nerve transmission, and hormone production. Phosphate and calcium also work together to support the formation of healthy teeth and maintain the body's acid-base balance. While the human body requires both phosphate and calcium, it is important to maintain a proper balance between the two minerals for optimal health.

3.What measures does sugar phosphate dna take to protect the environment?
Being one of the top sugar phosphate dna manufacturers in China, We attach great importance to this detail.
Phosphate, a chemical compound composed of phosphorous and oxygen, takes various measures to protect the environment. Firstly, it is used in sustainable agriculture practices as a fertilizer, promoting plant growth without causing harmful effects to the soil or water. Phosphate also plays a crucial role in wastewater treatment, helping to remove pollutants and improve water quality. In addition, phosphate-based detergents have been replaced with alternative products to reduce their negative impact on aquatic life. Moreover, strict regulations and proper disposal methods are enforced to prevent phosphate pollution in rivers and oceans. Furthermore, continuous research and development are conducted to find environmentally-friendly ways of producing phosphate and its derivatives. Through these efforts, phosphate helps to maintain a healthy balance in the ecosystem and safeguard the environment.
4.What foods contain sugar phosphate dna?
We should perform well in market competition, and the prices of sugar phosphate dna products have a great competitive advantage.
1. Dairy products: Milk, cheese, and yogurt are all high in phosphate.
2. Meat and poultry: Beef, chicken, and pork are good sources of phosphate.
3. Seafood: Fish, shrimp, and other seafood are also high in phosphate.
4. Nuts and seeds: Almonds, cashews, and sunflower seeds are all good sources of phosphate.
5. Whole grains: Whole wheat, oats, and brown rice are all high in phosphate.
6. Legumes: Beans, lentils, and peas are all good sources of phosphate.
7. Eggs: Both the yolk and white of an egg contain phosphate.
8. Chocolate: Dark chocolate is a good source of phosphate.
9. Carbonated beverages: Many soft drinks and energy drinks contain phosphate.
10. Processed foods: Many processed foods, such as canned soups and frozen meals, contain added phosphate as a preservative or flavor enhancer.

5.What are the uses of sugar phosphate dna in the pharmaceutical industry?
Phosphate is a crucial mineral in the pharmaceutical industry, playing a vital role in numerous processes and products. It is commonly used in the production of medication, as well as in the formulation of various vaccines and antibiotics. Additionally, phosphate is an essential ingredient in the manufacturing of vitamins, which are essential for maintaining good health. It is also used as a buffering agent to control the pH levels in medications, making them safe for consumption. Moreover, phosphate is used as an excipient, ensuring the stability and effectiveness of drugs. In summary, phosphate has a multitude of uses in the pharmaceutical industry, making it an indispensable component in the creation of medicines and other health-related products.
6.What is the role of catalysts in the sugar phosphate dna industry?
We have established a good reputation and reliable partnerships within the sugar phosphate dna industry.
Catalysts are an essential component in the phosphate industry, playing a key role in the production of vital fertilizers and other phosphates for industrial use. They serve as a facilitator, accelerating the chemical reactions involved in phosphate production, thereby increasing efficiency and reducing costs. These catalysts also help improve the quality and purity of the final product, ensuring that it meets regulatory standards. In addition, they enable the use of more sustainable and environmentally friendly processes, making the phosphate industry more efficient and sustainable. Without catalysts, the production of phosphates would be significantly slower and more expensive, making them a crucial element in the industry.

7.How is sugar phosphate dna extracted?
We continue to improve sugar phosphate dna products and processes to improve efficiency.
Phosphate is typically extracted through open-pit mining, which involves digging a large hole in the ground and removing the layers of phosphate-rich rock. The extracted rock is then crushed and processed to separate the phosphate from other minerals. This process may also involve washing, screening, and flotation to further refine the phosphate. In some cases, underground mining may also be used to extract phosphate deposits.
8.What impact do sugar phosphate dna have on the environment?
Phosphate plays a crucial role in fertilizers, detergents, and animal feeds, making it an important component of modern society. However, the widespread use of phosphate also has significant impacts on the environment. Excessive release of phosphate into the environment can lead to eutrophication, where an increase in nutrients causes excessive algae growth, leading to oxygen depletion and harm to aquatic organisms. Phosphate runoff from agricultural activities can also pollute water sources and harm sensitive ecosystems. In addition, phosphate mining can lead to land degradation and loss of biodiversity. To mitigate these negative impacts, sustainable practices and regulations must be implemented to properly manage and limit phosphate use.

9.What compounds can sugar phosphate dna form?
Phosphate has the ability to form a wide variety of compounds, including phosphate salts, phosphates used in fertilizers, phosphoric acid, and organic phosphates found in living organisms. It also forms important compounds such as DNA and ATP, which are crucial for energy storage and transfer in living organisms. Phosphate compounds are essential for various industrial and agricultural applications, as well as for the functioning of biological systems.
10.What is sugar phosphate dna?
I have a comprehensive after -sales service system, which can pay attention to market trends in time and adjust our strategy in a timely manner.
Phosphate is a chemical compound that contains the element phosphorus and oxygen. It is commonly found in nature as a mineral, and is an essential nutrient for plants and animals. Phosphate is also used in various industrial processes, such as in fertilizers, detergents, and food additives. In its various forms, phosphate plays a crucial role in many biological and chemical processes, including energy production, DNA and RNA synthesis, and bone formation.

11.How to use sugar phosphate dna safely?
Phosphate is a commonly used chemical compound that has various industrial, agricultural, and household applications. However, it can also be hazardous if not handled and used properly. Here are some tips on how to use phosphate safely:
1. Read and follow the safety instructions provided on the product label or packaging.
2. Wear appropriate protective gear, such as goggles, gloves, and a mask, when handling phosphate.
3. Avoid inhaling or ingesting the product. If contact with skin or eyes occurs, immediately rinse with plenty of water.
4. Store phosphate in a cool, dry, and well-ventilated area, away from sources of heat and ignition.
5. Keep phosphate out of reach of children and pets.
6. When using phosphate in large quantities or for extended periods of time, it is recommended to use it in a well-ventilated area.
7. Dispose of unused or leftover product according to local regulations and guidelines.
By following these safety precautions, you can ensure the safe and responsible use of phosphate.
12.How to distinguish sugar phosphate dna?
We have the leading technology and innovation capabilities, and attach importance to employee training and development, and provide promotion opportunities.
Phosphate, a chemical compound containing the element phosphorus, is commonly found in many materials such as fertilizers, detergents, and food. However, it is important to be able to distinguish phosphate from other compounds due to its potential environmental and health impacts. One way to do this is by testing for the presence of phosphates using specialized equipment, such as a spectrophotometer, which measures the absorption of light by the compound. Additionally, one can also use chemical tests, such as adding molybdate reagent to a sample, which will produce a yellow color if phosphates are present. Another method is by calculating the amount of phosphate based on the weight of a sample and the percentage of phosphorus in the compound. By using these techniques, one can accurately identify and quantify phosphate, allowing for proper handling and disposal to prevent harm to the environment and human health.

13.What are the advantages of combining sugar phosphate dna and organic fertilizers?
Combining phosphate and organic fertilizers offers numerous benefits for soil health and plant growth. Firstly, phosphate fertilizers provide essential nutrients such as phosphorus, which is crucial for plant growth and development. By combining it with organic fertilizers, which are derived from natural sources, the soil is enriched with a wider range of nutrients. This diversity of nutrients helps to improve soil structure and promotes a healthier and more balanced ecosystem. Additionally, organic fertilizers also improve soil water retention, reducing the need for frequent watering and increasing drought resistance.