Product center

Your location: Home - ProductsProducts

Guizhou SINO-PHOS Chemical Co., Ltd. specializes in the production of phosphoric acid and phosphates. Our company's main products include phosphoric acid, sodium tripolyphosphate, sodium hexametaphosphate, sodium tripophosphate, sodium pyrophosphate, etc. At present, it has formed an annual production scale of 30,000 tons of phosphate and 60,000 tons of phosphate. In 2009, the company passed ISO9001 international quality system certification.
All SINO-PHOS products are qualified, laying a good foundation for sustainable development. And it was successfully put into trial production in July 2009. Using continuous drying and dehydration technology, it is environmentally friendly, energy-saving and stable. Wire. Moreover, the electroplated TKPP produced by this production line meets industry standards and can replace imported products. SINO-PHOS focuses on the phosphate industry. Our products have entered many foreign countries such as United States of America,Philippines,Grenada,Chad, providing customers with high-quality products and reasonable prices.
Type | Disodium Phosphate |
Place of Origin | Guizhou,china |
Classification | Phosphate |
Other Names | Sodium Phosphate, Dibasic |
MF | Na2HPO4 |
EINECS No. | 231-448-7 |
Grade Standard | Industrial Grade, Reagent Grade |
Appearance | White Powder |
Application | emulgator,etc |
Brand Name | SINO-PHOS |
Model Number | / |
Product name | Sodium Phosphate, Dibasic |
Appearance | White powder |
Content Na2HPO4,( On dry basis),w/% | ≥91 |
Arsenic(As),mg/kg | ≤2 |
Heavy metal(as Pb),mg/kg | ≤10 |
Lead(Pb),mg/kg | ≤4 |
Fluorides(as F),mg/kg | ≤42 |
Insoluble substances,w/% | ≤0.2 |
Loss on drying,w/% | ≤4 |
Packaging Details | 5g/10g/50g/267g/500g/1kg/Bottle |
Supply Ability | 441 Kilogram/Kilograms per Month |
Quantity (grams) | > 257 |
Lead time (days) | 15 |
clindamycin phosphate gel bearings FAQs Guide
clindamycin phosphate gel, a type of natural mineral often found in rocks, is widely recognized for its significant role in plant and animal growth. As a necessary element for all living organisms, clindamycin phosphate gel has become an essential component in various industries, including agriculture, food production, and manufacturing. With our advanced technology and expertise, we have developed a series of high-quality clindamycin phosphate gel products that cater to different needs in the market. Our wide range of solutions not only provides essential nutrients for crops and livestock but also supports the development of sustainable and environmentally friendly processes. Keep reading to learn more about our clindamycin phosphate gel products and how they can benefit your business.
2.What are the environmental benefits of clindamycin phosphate gel recycling?
3.What compounds can clindamycin phosphate gel form?
4.What is the difference between ammonium clindamycin phosphate gel and diammonium clindamycin phosphate gel?
5.What is the role of catalysts in the clindamycin phosphate gel industry?
6.Can clindamycin phosphate gel be used to make building materials?
7.How to safely store clindamycin phosphate gel?
8.What are some common uses of clindamycin phosphate gel?
9.Why is clindamycin phosphate gel used in agriculture?
10.What is the chemical structure of clindamycin phosphate gel?
11.Can clindamycin phosphate gel be used to make plastic?
12.Can clindamycin phosphate gel be used as agricultural conservation agent?
13.Can clindamycin phosphate gel be used to make batteries?
14.What foods contain clindamycin phosphate gel?
1.What are the characteristics of magnesium clindamycin phosphate gel?
We enjoy high authority and influence in the industry and continue to innovate products and service models.
Magnesium phosphate is a compound that consists of magnesium and phosphate ions. It is a white, odorless solid that is commonly used in various industries such as food, fertilizers, and medicine. This compound possesses some unique characteristics that make it highly versatile and useful. Firstly, it is highly soluble in water, making it easy to incorporate into various solutions. Additionally, it has excellent thermal stability, making it resistant to high temperatures without decomposing. This quality makes it suitable for use as a fire retardant. Furthermore, magnesium phosphate has a low toxicity level, making it safe to use in food and medical applications. It also acts as a natural fertilizer, providing plants with essential nutrients like phosphorus and magnesium.
2.What are the environmental benefits of clindamycin phosphate gel recycling?
Phosphate is a key nutrient that is essential for the growth of plants and the health of our ecosystems. It is most commonly obtained from phosphate mining, a process that has significant environmental impacts including soil erosion, contamination of water sources, and loss of biodiversity. However, there is a more sustainable way to obtain and reuse phosphate – through recycling. Phosphate recycling involves recovering and reusing phosphorus from various sources such as wastewater, manure, and industrial byproducts. This process has many environmental benefits, including reducing the demand for new phosphate mining, decreasing pollution and eutrophication of water bodies, and conserving natural resources. By promoting phosphate recycling, we can help protect our environment and create a more sustainable future.
3.What compounds can clindamycin phosphate gel form?
Phosphate has the ability to form a wide variety of compounds, including phosphate salts, phosphates used in fertilizers, phosphoric acid, and organic phosphates found in living organisms. It also forms important compounds such as DNA and ATP, which are crucial for energy storage and transfer in living organisms. Phosphate compounds are essential for various industrial and agricultural applications, as well as for the functioning of biological systems.
4.What is the difference between ammonium clindamycin phosphate gel and diammonium clindamycin phosphate gel?
Our products & services cover a wide range of areas and meet the needs of different fields.
Ammonium phosphate and diammonium phosphate are both types of fertilizers that contain nitrogen and phosphorus. The main difference between them is the ratio of nitrogen to phosphorus and the chemical structure.
Ammonium phosphate is a general term that refers to any fertilizer containing both ammonium and phosphate. It can have different ratios of nitrogen to phosphorus, such as 10-34-0 or 16-20-0. This means that for every 100 pounds of fertilizer, there are 10 or 16 pounds of nitrogen and 34 or 20 pounds of phosphorus, respectively.
Diammonium phosphate (DAP) is a specific type of ammonium phosphate fertilizer with a ratio of 18-46-0. This means that for every 100 pounds of DAP, there are 18 pounds of nitrogen and 46 pounds of phosphorus. DAP is a highly concentrated fertilizer and is often used in the early stages of plant growth to promote root development.

5.What is the role of catalysts in the clindamycin phosphate gel industry?
We have established a good reputation and reliable partnerships within the clindamycin phosphate gel industry.
Catalysts are an essential component in the phosphate industry, playing a key role in the production of vital fertilizers and other phosphates for industrial use. They serve as a facilitator, accelerating the chemical reactions involved in phosphate production, thereby increasing efficiency and reducing costs. These catalysts also help improve the quality and purity of the final product, ensuring that it meets regulatory standards. In addition, they enable the use of more sustainable and environmentally friendly processes, making the phosphate industry more efficient and sustainable. Without catalysts, the production of phosphates would be significantly slower and more expensive, making them a crucial element in the industry.
6.Can clindamycin phosphate gel be used to make building materials?
We adhere to the principle of integrity and transparency, and establish long -term relationships with partners, and we attach great importance to this detail.
Yes, phosphate can be used to make building materials such as cement, plaster, and drywall. Phosphate is commonly used as a binding agent in these materials, providing strength and durability. It is also used as a flame retardant in some building materials. Additionally, phosphate can be used as a fertilizer in the production of building materials made from natural materials such as wood and bamboo.
7.How to safely store clindamycin phosphate gel?
We pay attention to employee development and benefits, and provide a good working environment in order to improve the efficiency of employees and improve the quality management of clindamycin phosphate gel products.
Storing phosphate properly is crucial for safety and environmental reasons. Firstly, ensure that the storage area is dry and well-ventilated to prevent any moisture build-up, which can cause the phosphate to become unstable and potentially combustible. Secondly, make sure to store it away from any sources of heat or open flames, as phosphate can react violently with these. Additionally, it is important to store phosphate away from other chemicals or materials that it could potentially react with. Proper labeling and segregation of storage containers is recommended to avoid any accidental mixing. It is also recommended to regularly inspect and maintain storage containers to prevent any leaks or spills. Finally, always follow the recommended storage instructions from the manufacturer to ensure safe handling and storage of phosphate.
8.What are some common uses of clindamycin phosphate gel?
We pay attention to the introduction and training of talents, scientifically regulate the management system, and focus on cultural construction and team cohesion.
1. Fertilizers: Phosphate is a key ingredient in many fertilizers, as it provides essential nutrients for plant growth and development.
2. Food and beverage industry: Phosphate is used as a food additive in many processed foods and beverages, such as soft drinks, cheese, and baked goods. It helps to improve texture, flavor, and shelf life.
3. Water treatment: Phosphate is used in water treatment to prevent the formation of scale and corrosion in pipes and equipment.
4. Detergents: Phosphate is a common ingredient in laundry and dishwashing detergents, as it helps to soften water and improve the cleaning efficiency.
5. Animal feed: Phosphate is added to animal feed to provide essential minerals for livestock and poultry.
6. Industrial applications: Phosphate is used in various industrial processes, such as metal finishing, ceramics, and detergents.
7. Pharmaceuticals: Phosphate is used in the production of medicines and supplements, such as calcium phosphate for bone health.
8. Flame retardants: Phosphate compounds are used as flame retardants in plastics, textiles, and other materials.
9. Construction materials: Phosphate is used in the production of cement, drywall, and other construction materials.
10. Energy production: Phosphate is used in the production of batteries for energy storage and in the production of biofuels.

9.Why is clindamycin phosphate gel used in agriculture?
We attach importance to the innovation ability and team spirit of employees, have advanced R & D facilities and laboratories, and have a good quality management system.
Phosphate is used in agriculture as a fertilizer to provide essential nutrients for plant growth. It is a major source of phosphorus, an essential element for plant growth and development. Phosphate helps plants to develop strong roots, produce more flowers and fruits, and increase their resistance to diseases and pests.
Phosphate is also important for soil health as it helps to maintain the pH balance and improve soil structure. It can also increase the availability of other nutrients in the soil, such as nitrogen and potassium.
In addition, phosphate is used in animal feed as a source of phosphorus for livestock. Phosphorus is essential for animal growth, bone development, and milk production.
Overall, phosphate is an important component of modern agriculture as it helps to increase crop yields and improve the quality of food production.
10.What is the chemical structure of clindamycin phosphate gel?
We have a professional team that is committed to the innovation and development of clindamycin phosphate gel.
The chemical structure of phosphate is a polyatomic ion with the chemical formula PO4^3-. It consists of one phosphorus atom bonded to four oxygen atoms in a tetrahedral arrangement. The phosphorus atom is in the center, with three single bonds to oxygen atoms and one double bond to another oxygen atom. The overall charge of the ion is negative three.
11.Can clindamycin phosphate gel be used to make plastic?
Yes, phosphate can be used to make plastic. Phosphate-based plastics, also known as polyphosphates, are a type of thermoplastic polymer that can be used to make a variety of products, including packaging materials, coatings, and adhesives. These plastics are made by polymerizing phosphoric acid or its derivatives, such as phosphoric anhydride, with other monomers. They are known for their high strength, durability, and resistance to heat and chemicals. However, due to concerns about the environmental impact of phosphate mining and production, alternative materials are being developed to replace phosphate-based plastics.
12.Can clindamycin phosphate gel be used as agricultural conservation agent?
We have established long-term and stable partnerships with our suppliers, so we have great advantages in price and cost and quality assurance.
Yes, phosphate can be used as an agricultural conservation agent. Phosphate is an essential nutrient for plant growth and is commonly used as a fertilizer in agriculture. It helps to promote root growth, increase crop yield, and improve plant health. In addition, phosphate can also act as a soil conservation agent by improving soil structure, reducing erosion, and increasing water retention. However, excessive use of phosphate can lead to environmental issues such as water pollution, so it is important to use it in moderation and follow recommended application rates.

13.Can clindamycin phosphate gel be used to make batteries?
clindamycin phosphate gel is not a product only, but also can help you comes to money-making.
Yes, phosphate can be used to make batteries. Phosphate-based batteries, also known as lithium iron phosphate (LiFePO4) batteries, are a type of rechargeable battery that uses phosphate as the cathode material. These batteries are known for their high energy density, long lifespan, and safety compared to other types of batteries. They are commonly used in electric vehicles, solar energy storage systems, and other applications that require high-performance batteries.
14.What foods contain clindamycin phosphate gel?
We should perform well in market competition, and the prices of clindamycin phosphate gel products have a great competitive advantage.
1. Dairy products: Milk, cheese, and yogurt are all high in phosphate.
2. Meat and poultry: Beef, chicken, and pork are good sources of phosphate.
3. Seafood: Fish, shrimp, and other seafood are also high in phosphate.
4. Nuts and seeds: Almonds, cashews, and sunflower seeds are all good sources of phosphate.
5. Whole grains: Whole wheat, oats, and brown rice are all high in phosphate.
6. Legumes: Beans, lentils, and peas are all good sources of phosphate.
7. Eggs: Both the yolk and white of an egg contain phosphate.
8. Chocolate: Dark chocolate is a good source of phosphate.
9. Carbonated beverages: Many soft drinks and energy drinks contain phosphate.
10. Processed foods: Many processed foods, such as canned soups and frozen meals, contain added phosphate as a preservative or flavor enhancer.