Product center

Your location: Home - ProductsProducts

Guizhou SINO-PHOS Chemical Co., Ltd. is a company with more than 18 years of experience specializing in the production and supply of a series of chemical products. SINO-PHOS has advanced production lines and scientific research teams. We can provide OEM services and solutions. Strict quality control and excellent service have made us among the reliable suppliers for many well-known brands in the world. The main products include phosphoric acid, sodium tripolyphosphate, sodium hexametaphosphate, sodium tripophosphate, sodium pyrophosphate, etc. At present, it has formed an annual production scale of 30,000 tons of phosphate and 60,000 tons of phosphate. In 2009, the company passed ISO9001 international quality system certification.
All SINO-PHOS products comply with international quality standards, and customers come from different markets around the world. For example Vietnam,Guernsey,Antigua and Barbuda,Moldova etc. Nearly one-third of our clients have been with us for more than ten years. Thinking what customers think and doing what customers think, we sincerely hope to establish long-term friendly cooperative relations with more friends at home and abroad to develop together and embrace fruitful results!
Type | Disodium Phosphate |
Place of Origin | Guizhou,china |
Classification | Phosphate |
Other Names | Sodium Phosphate, Dibasic |
MF | Na2HPO4 |
EINECS No. | 231-448-7 |
Grade Standard | Industrial Grade, Reagent Grade |
Appearance | White Powder |
Application | emulgator,etc |
Brand Name | SINO-PHOS |
Model Number | / |
Product name | Sodium Phosphate, Dibasic |
Appearance | White powder |
Content Na2HPO4,( On dry basis),w/% | ≥90 |
Arsenic(As),mg/kg | ≤3 |
Heavy metal(as Pb),mg/kg | ≤8 |
Lead(Pb),mg/kg | ≤3 |
Fluorides(as F),mg/kg | ≤49 |
Insoluble substances,w/% | ≤0.2 |
Loss on drying,w/% | ≤6 |
Packaging Details | 5g/10g/50g/252g/500g/1kg/Bottle |
Supply Ability | 463 Kilogram/Kilograms per Month |
Quantity (grams) | > 245 |
Lead time (days) | 15 |
clindamycin phosphate bearings FAQs Guide clindamycin phosphate, a type of natural mineral often found in rocks, is widely recognized for its significant role in plant and animal growth. As a necessary element for all living organisms, clindamycin phosphate has become an essential component in various industries, including agriculture, food production, and manufacturing. With our advanced technology and expertise, we have developed a series of high-quality clindamycin phosphate products that cater to different needs in the market. Our wide range of solutions not only provides essential nutrients for crops and livestock but also supports the development of sustainable and environmentally friendly processes. Keep reading to learn more about our clindamycin phosphate products and how they can benefit your business.
2.What by-products are produced during the production of clindamycin phosphate?
3.Can clindamycin phosphate be used as fertilizer?
4.What is the difference between clindamycin phosphate and organic compounds?
5.What is clindamycin phosphate?
6.What effect does clindamycin phosphate have on plant growth?
7.Does clindamycin phosphate promote certain diseases?
8.How is clindamycin phosphate extracted?
9.What diseases can clindamycin phosphate be used to treat?
10.What products can clindamycin phosphate be used to make?
11.What are the production processes for clindamycin phosphate?
12.What are the advantages of combining clindamycin phosphate and organic fertilizers?
13.What measures does clindamycin phosphate take to protect the environment?
14.How to control the concentration of clindamycin phosphate in water?
15.What is the role of catalysts in the clindamycin phosphate industry?
1.What is the difference between ammonium clindamycin phosphate and diammonium clindamycin phosphate?
Our products & services cover a wide range of areas and meet the needs of different fields.
Ammonium phosphate and diammonium phosphate are both types of fertilizers that contain nitrogen and phosphorus. The main difference between them is the ratio of nitrogen to phosphorus and the chemical structure.
Ammonium phosphate is a general term that refers to any fertilizer containing both ammonium and phosphate. It can have different ratios of nitrogen to phosphorus, such as 10-34-0 or 16-20-0. This means that for every 100 pounds of fertilizer, there are 10 or 16 pounds of nitrogen and 34 or 20 pounds of phosphorus, respectively.
Diammonium phosphate (DAP) is a specific type of ammonium phosphate fertilizer with a ratio of 18-46-0. This means that for every 100 pounds of DAP, there are 18 pounds of nitrogen and 46 pounds of phosphorus. DAP is a highly concentrated fertilizer and is often used in the early stages of plant growth to promote root development.
2.What by-products are produced during the production of clindamycin phosphate?
Our company has many years of clindamycin phosphate experience and expertise.
During the production process of phosphate, various by-products are produced. These include sulfuric acid, which is used in the initial step of phosphate production, as well as gypsum, which is a by-product of the neutralization process. Other by-products include fluoride gases, which are created during the acidulation process, and phosphogypsum, a solid waste produced during the production of phosphoric acid. Additionally, various heavy metals, such as cadmium, nickel, and lead, can also be produced depending on the type of phosphate ore being processed. These by-products require proper handling and disposal to minimize their impact on the environment.
3.Can clindamycin phosphate be used as fertilizer?
Our clindamycin phosphate products undergo strict quality control to ensure customer satisfaction.
Yes, phosphate is commonly used as a fertilizer in agriculture. It is a major component of most commercial fertilizers and is essential for plant growth and development. Phosphate helps plants to develop strong roots, promotes flower and fruit production, and aids in the transfer of energy within the plant. It is also an important nutrient for crop yield and quality. However, excessive use of phosphate fertilizers can lead to environmental pollution and eutrophication of water bodies. Therefore, it is important to use phosphate fertilizers in a responsible and sustainable manner.
4.What is the difference between clindamycin phosphate and organic compounds?
Phosphate refers to a specific chemical compound containing the element phosphorus, while organic compounds refer to a broad category of compounds that contain carbon and are found in living organisms. Phosphate is a type of inorganic compound, meaning it does not contain carbon, while organic compounds are characterized by the presence of carbon-hydrogen bonds. Additionally, phosphate is often used as a source of energy in biological processes, while organic compounds can serve a variety of functions such as structural support, energy storage, and signaling.
5.What is clindamycin phosphate?
I have a comprehensive after -sales service system, which can pay attention to market trends in time and adjust our strategy in a timely manner.
Phosphate is a chemical compound that contains the element phosphorus and oxygen. It is commonly found in nature as a mineral, and is an essential nutrient for plants and animals. Phosphate is also used in various industrial processes, such as in fertilizers, detergents, and food additives. In its various forms, phosphate plays a crucial role in many biological and chemical processes, including energy production, DNA and RNA synthesis, and bone formation.

6.What effect does clindamycin phosphate have on plant growth?
Phosphate is an essential nutrient required for plant growth. It plays a crucial role in various vital processes such as photosynthesis, energy transfer, and synthesis of DNA and RNA. When phosphate is limited in the soil, plants may exhibit stunted growth, yellowing of leaves, and reduced root development. However, an adequate supply of phosphate in the soil can promote root growth, improve plant vigor, and increase crop yield. Excess phosphate, on the other hand, can lead to environmental pollution and harm to aquatic life. Therefore, it is crucial for farmers and gardeners to manage phosphate levels carefully to ensure optimal plant growth and promote sustainable agriculture.
7.Does clindamycin phosphate promote certain diseases?
We focus on providing high clindamycin phosphate quality products and services.
There is no evidence to suggest that phosphate directly promotes certain diseases. However, excessive intake of phosphate through diet or supplements can lead to health issues such as kidney disease, heart disease, and osteoporosis. Additionally, high levels of phosphate in the body can disrupt the balance of other minerals, such as calcium, which can contribute to the development of certain diseases. It is important to maintain a balanced intake of phosphate and other minerals for overall health and disease prevention.
8.How is clindamycin phosphate extracted?
We continue to improve clindamycin phosphate products and processes to improve efficiency.
Phosphate is typically extracted through open-pit mining, which involves digging a large hole in the ground and removing the layers of phosphate-rich rock. The extracted rock is then crushed and processed to separate the phosphate from other minerals. This process may also involve washing, screening, and flotation to further refine the phosphate. In some cases, underground mining may also be used to extract phosphate deposits.
9.What diseases can clindamycin phosphate be used to treat?
We adhere to the principle of quality first and have a complete production quality management system and quality inspection process.
Phosphate, one of the essential mineral components in our body, has been widely used in treating various diseases. It is commonly used in the treatment of osteoporosis, a condition characterized by low bone density and increased risk of fractures. Phosphate is also utilized in the treatment of kidney diseases, including kidney failure and renal tubular acidosis, where it helps to regulate electrolyte balance and maintain healthy kidney function. In addition, phosphate has been shown to be beneficial in managing certain genetic disorders that affect phosphate metabolism, such as hypophosphatemia and familial hypophosphatemic rickets. Furthermore, phosphate is used in the treatment of some inflammatory diseases, such as inflammatory bowel disease, due to its anti-inflammatory properties.
10.What products can clindamycin phosphate be used to make?
Phosphate is a versatile compound that can be used in a variety of products. It is commonly used in fertilizers to provide essential nutrients for plant growth and development. Additionally, phosphate is an important ingredient in detergents, allowing for the removal of dirt and stains. In the food industry, phosphate acts as a preservative, helping to extend the shelf life of products. It is also used in the production of animal feed, as it provides essential minerals for animal health. Phosphate is also utilized in the production of various industrial products such as toothpaste, cleaning agents, and water treatment chemicals. Its multitude of uses make it a crucial component in many everyday products and industries.

11.What are the production processes for clindamycin phosphate?
We focus on teamwork and communication to achieve common goals, We attach great importance to this detail.
Phosphate, also known as phosphate rock, is a mineral that is typically found in sedimentary rocks. It is an essential nutrient for plant growth and is commonly used in fertilizer production. The production processes for phosphate involve mining and extraction of the mineral from ore deposits, followed by washing, crushing, and grinding to create a powdered form. The powdered form is then treated with sulfuric acid to produce phosphoric acid, which is used as a key ingredient in most fertilizers. Additional steps may be taken to refine the phosphoric acid into a more concentrated form, or to produce various types of phosphate fertilizers. The production of phosphate is an important industry worldwide, providing essential nutrients for plants and helping to increase crop yields.
12.What are the advantages of combining clindamycin phosphate and organic fertilizers?
Combining phosphate and organic fertilizers offers numerous benefits for soil health and plant growth. Firstly, phosphate fertilizers provide essential nutrients such as phosphorus, which is crucial for plant growth and development. By combining it with organic fertilizers, which are derived from natural sources, the soil is enriched with a wider range of nutrients. This diversity of nutrients helps to improve soil structure and promotes a healthier and more balanced ecosystem. Additionally, organic fertilizers also improve soil water retention, reducing the need for frequent watering and increasing drought resistance.
13.What measures does clindamycin phosphate take to protect the environment?
Being one of the top clindamycin phosphate manufacturers in China, We attach great importance to this detail.
Phosphate, a chemical compound composed of phosphorous and oxygen, takes various measures to protect the environment. Firstly, it is used in sustainable agriculture practices as a fertilizer, promoting plant growth without causing harmful effects to the soil or water. Phosphate also plays a crucial role in wastewater treatment, helping to remove pollutants and improve water quality. In addition, phosphate-based detergents have been replaced with alternative products to reduce their negative impact on aquatic life. Moreover, strict regulations and proper disposal methods are enforced to prevent phosphate pollution in rivers and oceans. Furthermore, continuous research and development are conducted to find environmentally-friendly ways of producing phosphate and its derivatives. Through these efforts, phosphate helps to maintain a healthy balance in the ecosystem and safeguard the environment.
14.How to control the concentration of clindamycin phosphate in water?
Phosphate is an essential nutrient for plant growth and is commonly found in water sources. However, high concentrations of phosphate can lead to eutrophication, causing harm to aquatic ecosystems. Therefore, it is important to control the concentration of phosphate in water. One way to do this is through proper wastewater treatment methods. Municipal treatment plants use techniques such as chemical precipitation and biological nutrient removal to remove excess phosphate from wastewater. Moreover, farmers can also reduce the use of phosphate-rich fertilizers and implement sustainable irrigation practices to prevent further contamination of water sources. Regular monitoring of water quality and implementing strict regulations can also help in controlling phosphate levels. Additionally, educating the public on the harmful effects of excessive phosphate in water can promote individual responsibility in reducing phosphate pollution. By combining these efforts, we can effectively control the concentration of phosphate in water and protect our planet's water resources.
15.What is the role of catalysts in the clindamycin phosphate industry?
We have established a good reputation and reliable partnerships within the clindamycin phosphate industry.
Catalysts are an essential component in the phosphate industry, playing a key role in the production of vital fertilizers and other phosphates for industrial use. They serve as a facilitator, accelerating the chemical reactions involved in phosphate production, thereby increasing efficiency and reducing costs. These catalysts also help improve the quality and purity of the final product, ensuring that it meets regulatory standards. In addition, they enable the use of more sustainable and environmentally friendly processes, making the phosphate industry more efficient and sustainable. Without catalysts, the production of phosphates would be significantly slower and more expensive, making them a crucial element in the industry.
