Product center

Your location: Home - ProductsProducts

Guizhou SINO-PHOS Chemical Co., Ltd. can supply phosphoric acid, sodium tripolyphosphate, sodium hexametaphosphate, sodium tripophosphate, sodium pyrophosphate, etc. with the best quality and the most favorable price, 20,000-50,000 tons per month. For 18 years, it has focused on the research, development and production of phosphoric acid and phosphates. The company has a complete phosphating and phosphating production line, which can provide customers with a full-process production and quality assurance chain. Our products are widely used in DAP, SSP, TSP, MAP, NPK fertilizers and DCP, MDCP, TCP feed additives and other fertilizer industries in Mexico,Pakistan,Cook Islands,Jamaica,Spratly Islands and other countries.
Type | Disodium phosphate |
Place of Origin | Guizhou, China |
Classification | Phosphate |
Other Names | Dibasic Sodium Phosphate |
MF | Na2HPO4.2H2O |
EINECS No. | 231-448-7 |
Grade Standard | Food Grade |
Appearance | white cystal |
Application | Food ingredients |
Brand Name | SINO-PHOS |
Model Number | BYPH-12 |
Product Name | Disodium Phosphate |
Grade | Food Garde |
Density | 1.52 |
Insoluble | Alcohol |
Soluble | In water |
Molecular weight | 177.99 |
PH (1% aqueous solution) | 8.8-9.2 |
Executive Standard | GB25568-2010 |
Pallet | Based on buyer's requirment |
Shelf life | 2 Years Proper Storage |
Packaging Details | 25KG/59KG/1030KG |
Supply Ability | 3523750 Kilogram/Kilograms per Year |
Quantity (metric tons) | > 230 |
Lead time (days) | 26 |
creatine phosphate function bearings FAQs Guide
creatine phosphate function, a type of natural mineral often found in rocks, is widely recognized for its significant role in plant and animal growth. As a necessary element for all living organisms, creatine phosphate function has become an essential component in various industries, including agriculture, food production, and manufacturing. With our advanced technology and expertise, we have developed a series of high-quality creatine phosphate function products that cater to different needs in the market. Our wide range of solutions not only provides essential nutrients for crops and livestock but also supports the development of sustainable and environmentally friendly processes. Keep reading to learn more about our creatine phosphate function products and how they can benefit your business.
2.Which countries have the largest international creatine phosphate function production?
3.What is the difference between creatine phosphate function and organic fertilizers?
4.What is the difference between creatine phosphate function and diammonium creatine phosphate function?
5.What are the uses of creatine phosphate function in the pharmaceutical industry?
6.What is the role of creatine phosphate function in the food processing industry?
7.What is the difference between creatine phosphate function and organic compounds?
8.creatine phosphate function What technology is used in making polycreatine phosphate function?
9.How to test the creatine phosphate function content in food?
10.What are the environmental benefits of creatine phosphate function recycling?
11.Can creatine phosphate function be used as agricultural conservation agent?
12.What effects do high creatine phosphate function levels have on the human body?
13.What is tripolycreatine phosphate function?
14.What are the uses of creatine phosphate function in medical devices?
15.Can creatine phosphate function be used to make plastic?
1.What factors affect the price of creatine phosphate function?
We have a wide range of creatine phosphate function customer groups and establishes long -term cooperative relationships with partners. The countries we provide services include .
The price of phosphate, a key mineral resource used in fertilizer production, is influenced by a variety of factors. These include supply and demand, political and economic stability in phosphate-producing countries, innovation and technological advancements in mining and processing techniques, and environmental regulations. Fluctuations in global market conditions, such as changes in agricultural practices and shifts in consumer demand for organic produce, can also impact the price of phosphate. Additionally, government subsidies and efforts to increase domestic production can play a role in determining the overall cost. As a critical component in the agricultural industry, the price of phosphate is constantly fluctuating and affected by a complex combination of factors.
2.Which countries have the largest international creatine phosphate function production?
1. China
2. Morocco
3. United States
4. Russia
5. Jordan
6. Saudi Arabia
7. Egypt
8. Brazil
9. Tunisia
10. Israel

3.What is the difference between creatine phosphate function and organic fertilizers?
Phosphate and organic fertilizers are two commonly used types of fertilizers in agriculture, but they differ in their origin, composition, and benefits. Phosphate fertilizers are made from mined rock phosphate and contain high levels of phosphorus, an essential nutrient for plant growth. On the other hand, organic fertilizers are derived from natural sources such as animal manure, compost, and crop residues. They are rich in organic matter and micronutrients, which help improve soil health and increase crop yields. While phosphate fertilizers show immediate results, organic fertilizers provide a slow release of nutrients, leading to long-term soil fertility. Additionally, organic fertilizers are more environmentally friendly and sustainable, while phosphate fertilizers can have negative impacts on the environment if overused.
4.What is the difference between creatine phosphate function and diammonium creatine phosphate function?
We operate our creatine phosphate function business with integrity and honesty.
Phosphate refers to any compound containing the phosphate ion (PO4^3-), while diammonium phosphate (DAP) specifically refers to a compound with the chemical formula (NH4)2HPO4. DAP is a type of phosphate fertilizer commonly used in agriculture, while phosphate can refer to a variety of compounds with different uses and properties.

5.What are the uses of creatine phosphate function in the pharmaceutical industry?
Phosphate is a crucial mineral in the pharmaceutical industry, playing a vital role in numerous processes and products. It is commonly used in the production of medication, as well as in the formulation of various vaccines and antibiotics. Additionally, phosphate is an essential ingredient in the manufacturing of vitamins, which are essential for maintaining good health. It is also used as a buffering agent to control the pH levels in medications, making them safe for consumption. Moreover, phosphate is used as an excipient, ensuring the stability and effectiveness of drugs. In summary, phosphate has a multitude of uses in the pharmaceutical industry, making it an indispensable component in the creation of medicines and other health-related products.
6.What is the role of creatine phosphate function in the food processing industry?
We are centered on customers and always pay attention to customers' needs for creatine phosphate function products.
Phosphate plays a crucial role in the food processing industry. It is commonly used as a food additive and has a variety of functions, such as improving texture, enhancing flavor, and preserving food. Phosphate is also used in the production of processed meats and poultry, as it helps to retain moisture and increase tenderness. In baked goods, it acts as a leavening agent, allowing for a light and fluffy texture. Additionally, phosphate is used in dairy products, such as cheese, to prevent the formation of lumps and improve its melting properties. Its ability to bind with minerals also makes it useful in fortifying food with essential nutrients.

7.What is the difference between creatine phosphate function and organic compounds?
Phosphate refers to a specific chemical compound containing the element phosphorus, while organic compounds refer to a broad category of compounds that contain carbon and are found in living organisms. Phosphate is a type of inorganic compound, meaning it does not contain carbon, while organic compounds are characterized by the presence of carbon-hydrogen bonds. Additionally, phosphate is often used as a source of energy in biological processes, while organic compounds can serve a variety of functions such as structural support, energy storage, and signaling.
8.creatine phosphate function What technology is used in making polycreatine phosphate function?
We have advanced production equipment and technology to meet the needs of customers, and can provide customers with high quality, low priced creatine phosphate function products.
The technology used in making polyphosphate is typically a chemical process called polymerization. This involves combining monomers (smaller molecules) to form long chains of repeating units, known as polymers. In the case of polyphosphate, the monomers are typically phosphoric acid or phosphates, which are combined to form long chains of phosphate molecules.
The process of polymerization can be carried out using various methods, including solution polymerization, emulsion polymerization, and suspension polymerization. These methods involve mixing the monomers with a catalyst and other additives, and then subjecting the mixture to heat, pressure, or radiation to initiate the polymerization reaction.
Once the polymerization is complete, the resulting polyphosphate can be further processed and modified to meet specific requirements for different applications. This may involve adding other chemicals, blending with other polymers, or shaping the polyphosphate into different forms, such as pellets, sheets, or fibers.

9.How to test the creatine phosphate function content in food?
We have a first -class management team, and we pay attention to teamwork to achieve common goals.
There are several methods for testing the phosphate content in food. One common method is to use a colorimetric test that relies on the reaction between phosphate ions and a reagent solution. This test produces a color change that can be compared to a color chart to determine the level of phosphate present in the food sample. Another method is to use ion chromatography, which involves separating and quantifying the different ions present in the food sample. This method provides a more precise measurement of phosphate levels. Additionally, some food manufacturers may use in-house laboratory testing or send samples to external laboratories for more comprehensive analysis. No matter the method used, it is important to follow proper protocols and use reliable equipment to ensure accurate results. Regular testing of phosphate levels in food is crucial for maintaining food safety and ensuring compliance with regulatory standards.
10.What are the environmental benefits of creatine phosphate function recycling?
Phosphate is a key nutrient that is essential for the growth of plants and the health of our ecosystems. It is most commonly obtained from phosphate mining, a process that has significant environmental impacts including soil erosion, contamination of water sources, and loss of biodiversity. However, there is a more sustainable way to obtain and reuse phosphate – through recycling. Phosphate recycling involves recovering and reusing phosphorus from various sources such as wastewater, manure, and industrial byproducts. This process has many environmental benefits, including reducing the demand for new phosphate mining, decreasing pollution and eutrophication of water bodies, and conserving natural resources. By promoting phosphate recycling, we can help protect our environment and create a more sustainable future.

11.Can creatine phosphate function be used as agricultural conservation agent?
We have established long-term and stable partnerships with our suppliers, so we have great advantages in price and cost and quality assurance.
Yes, phosphate can be used as an agricultural conservation agent. Phosphate is an essential nutrient for plant growth and is commonly used as a fertilizer in agriculture. It helps to promote root growth, increase crop yield, and improve plant health. In addition, phosphate can also act as a soil conservation agent by improving soil structure, reducing erosion, and increasing water retention. However, excessive use of phosphate can lead to environmental issues such as water pollution, so it is important to use it in moderation and follow recommended application rates.
12.What effects do high creatine phosphate function levels have on the human body?
We should have a stable supply chain and logistics capabilities, and provide customers with high -quality, low -priced creatine phosphate function products.
High levels of phosphate in the human body can have several negative effects. Phosphate is an essential mineral for various biological processes, such as bone growth and energy production, but excess amounts can be harmful. High phosphate levels can lead to a condition known as hyperphosphatemia, which can cause symptoms such as muscle cramps, fatigue, and cognitive impairment. It can also contribute to bone density loss and increased risk of kidney disease. Additionally, high phosphate levels may disrupt the balance of other important minerals in the body, such as calcium and magnesium. It is important to maintain a healthy balance of phosphate in the body through proper diet and regular monitoring to prevent these potential negative effects.

13.What is tripolycreatine phosphate function?
As one of the creatine phosphate function market leaders, we are known for innovation and reliability.
Tripolyphosphate is a chemical compound with the formula Na5P3O10. It is a water-soluble salt that is commonly used as a food additive, detergent builder, and water softener. It is also used in industrial applications such as metal cleaning and water treatment. Tripolyphosphate is a white, odorless powder that is stable under normal conditions. It is considered safe for consumption and has a low toxicity.
14.What are the uses of creatine phosphate function in medical devices?
We continue to invest in research and development and continue to launch innovative products.
Phosphate is a vital substance that has a wide range of uses in the field of medical devices. It is commonly found in bone tissue and is essential for bone growth and maintenance. In medical devices, phosphate is used as a component of bioactive materials, such as coatings and implants, to aid in the healing process and promote bone regeneration. Additionally, it is also used as a lubricant in medical devices, helping to reduce friction and improve overall functioning. Phosphate is also an important ingredient in various medications, including antibiotics and antacids, making it a crucial element in the treatment of various medical conditions. Its versatility and important role in both the structure and function of medical devices make phosphate an essential component in the healthcare industry.

15.Can creatine phosphate function be used to make plastic?
Yes, phosphate can be used to make plastic. Phosphate-based plastics, also known as polyphosphates, are a type of thermoplastic polymer that can be used to make a variety of products, including packaging materials, coatings, and adhesives. These plastics are made by polymerizing phosphoric acid or its derivatives, such as phosphoric anhydride, with other monomers. They are known for their high strength, durability, and resistance to heat and chemicals. However, due to concerns about the environmental impact of phosphate mining and production, alternative materials are being developed to replace phosphate-based plastics.