Product center

Your location: Home - ProductsProducts

Guizhou SINO-PHOS Chemical Co., Ltd. is China's leading manufacturer of phosphoric acid and phosphates. It has advanced production technology and equipment, and strictly controls raw material selection and production processes to ensure product quality and safety. Our main products include phosphoric acid, sodium tripolyphosphate, sodium hexametaphosphate, sodium tripophosphate, sodium pyrophosphate and other specifications, which can meet the needs of different customers.
Phosphate is an important chemical substance widely used in food, medicine, agriculture, chemical industry and other fields. As a Phosphate manufacturer, we are committed to producing high-quality, environmentally friendly, and safe products to meet global market demand. All our products comply with international quality standards and our customers come from different markets around the world. For example Sudan,Turkey,Haiti etc.
Type | Disodium phosphate |
Place of Origin | Guizhou, China |
Classification | Phosphate |
Other Names | Dibasic Sodium Phosphate |
MF | Na2HPO4.2H2O |
EINECS No. | 231-448-7 |
Grade Standard | Food Grade |
Appearance | white cystal |
Application | Food ingredients |
Brand Name | SINO-PHOS |
Model Number | BYPH-12 |
Product Name | Disodium Phosphate |
Grade | Food Garde |
Density | 1.52 |
Insoluble | Alcohol |
Soluble | In water |
Molecular weight | 177.99 |
PH (1% aqueous solution) | 8.8-9.2 |
Executive Standard | GB25568-2010 |
Pallet | Based on buyer's requirment |
Shelf life | 2 Years Proper Storage |
Packaging Details | 17KG/54KG/1018KG |
Supply Ability | 3673535 Kilogram/Kilograms per Year |
Quantity (metric tons) | > 163 |
Lead time (days) | 26 |
define phosphate biology bearings FAQs Guide
define phosphate biology, a type of natural mineral often found in rocks, is widely recognized for its significant role in plant and animal growth. As a necessary element for all living organisms, define phosphate biology has become an essential component in various industries, including agriculture, food production, and manufacturing. With our advanced technology and expertise, we have developed a series of high-quality define phosphate biology products that cater to different needs in the market. Our wide range of solutions not only provides essential nutrients for crops and livestock but also supports the development of sustainable and environmentally friendly processes. Keep reading to learn more about our define phosphate biology products and how they can benefit your business.
2.What compounds can define phosphate biology form?
3.Which countries have the largest international define phosphate biology production?
4.What is the difference between define phosphate biology and organic fertilizers?
5.What is the role of catalysts in the define phosphate biology industry?
6.define phosphate biology What technology is used in making polydefine phosphate biology?
7.How is define phosphate biology extracted?
8.How to safely store define phosphate biology?
9.What is the difference between ammonium define phosphate biology and diammonium define phosphate biology?
10.Will define phosphate biology be used in environmental protection projects?
11.In which industries do define phosphate biology play an important role?
12.Are define phosphate biology common on Earth?
13.What is the relationship between define phosphate biology and calcium?
14.What effect does define phosphate biology have on plant growth?
15.How to use define phosphate biology safely?
1.What impact do define phosphate biology have on the environment?
Phosphate plays a crucial role in fertilizers, detergents, and animal feeds, making it an important component of modern society. However, the widespread use of phosphate also has significant impacts on the environment. Excessive release of phosphate into the environment can lead to eutrophication, where an increase in nutrients causes excessive algae growth, leading to oxygen depletion and harm to aquatic organisms. Phosphate runoff from agricultural activities can also pollute water sources and harm sensitive ecosystems. In addition, phosphate mining can lead to land degradation and loss of biodiversity. To mitigate these negative impacts, sustainable practices and regulations must be implemented to properly manage and limit phosphate use.
2.What compounds can define phosphate biology form?
Phosphate has the ability to form a wide variety of compounds, including phosphate salts, phosphates used in fertilizers, phosphoric acid, and organic phosphates found in living organisms. It also forms important compounds such as DNA and ATP, which are crucial for energy storage and transfer in living organisms. Phosphate compounds are essential for various industrial and agricultural applications, as well as for the functioning of biological systems.
3.Which countries have the largest international define phosphate biology production?
1. China
2. Morocco
3. United States
4. Russia
5. Jordan
6. Saudi Arabia
7. Egypt
8. Brazil
9. Tunisia
10. Israel
4.What is the difference between define phosphate biology and organic fertilizers?
Phosphate and organic fertilizers are two commonly used types of fertilizers in agriculture, but they differ in their origin, composition, and benefits. Phosphate fertilizers are made from mined rock phosphate and contain high levels of phosphorus, an essential nutrient for plant growth. On the other hand, organic fertilizers are derived from natural sources such as animal manure, compost, and crop residues. They are rich in organic matter and micronutrients, which help improve soil health and increase crop yields. While phosphate fertilizers show immediate results, organic fertilizers provide a slow release of nutrients, leading to long-term soil fertility. Additionally, organic fertilizers are more environmentally friendly and sustainable, while phosphate fertilizers can have negative impacts on the environment if overused.

5.What is the role of catalysts in the define phosphate biology industry?
We have established a good reputation and reliable partnerships within the define phosphate biology industry.
Catalysts are an essential component in the phosphate industry, playing a key role in the production of vital fertilizers and other phosphates for industrial use. They serve as a facilitator, accelerating the chemical reactions involved in phosphate production, thereby increasing efficiency and reducing costs. These catalysts also help improve the quality and purity of the final product, ensuring that it meets regulatory standards. In addition, they enable the use of more sustainable and environmentally friendly processes, making the phosphate industry more efficient and sustainable. Without catalysts, the production of phosphates would be significantly slower and more expensive, making them a crucial element in the industry.
6.define phosphate biology What technology is used in making polydefine phosphate biology?
We have advanced production equipment and technology to meet the needs of customers, and can provide customers with high quality, low priced define phosphate biology products.
The technology used in making polyphosphate is typically a chemical process called polymerization. This involves combining monomers (smaller molecules) to form long chains of repeating units, known as polymers. In the case of polyphosphate, the monomers are typically phosphoric acid or phosphates, which are combined to form long chains of phosphate molecules.
The process of polymerization can be carried out using various methods, including solution polymerization, emulsion polymerization, and suspension polymerization. These methods involve mixing the monomers with a catalyst and other additives, and then subjecting the mixture to heat, pressure, or radiation to initiate the polymerization reaction.
Once the polymerization is complete, the resulting polyphosphate can be further processed and modified to meet specific requirements for different applications. This may involve adding other chemicals, blending with other polymers, or shaping the polyphosphate into different forms, such as pellets, sheets, or fibers.
7.How is define phosphate biology extracted?
We continue to improve define phosphate biology products and processes to improve efficiency.
Phosphate is typically extracted through open-pit mining, which involves digging a large hole in the ground and removing the layers of phosphate-rich rock. The extracted rock is then crushed and processed to separate the phosphate from other minerals. This process may also involve washing, screening, and flotation to further refine the phosphate. In some cases, underground mining may also be used to extract phosphate deposits.
8.How to safely store define phosphate biology?
We pay attention to employee development and benefits, and provide a good working environment in order to improve the efficiency of employees and improve the quality management of define phosphate biology products.
Storing phosphate properly is crucial for safety and environmental reasons. Firstly, ensure that the storage area is dry and well-ventilated to prevent any moisture build-up, which can cause the phosphate to become unstable and potentially combustible. Secondly, make sure to store it away from any sources of heat or open flames, as phosphate can react violently with these. Additionally, it is important to store phosphate away from other chemicals or materials that it could potentially react with. Proper labeling and segregation of storage containers is recommended to avoid any accidental mixing. It is also recommended to regularly inspect and maintain storage containers to prevent any leaks or spills. Finally, always follow the recommended storage instructions from the manufacturer to ensure safe handling and storage of phosphate.

9.What is the difference between ammonium define phosphate biology and diammonium define phosphate biology?
Our products & services cover a wide range of areas and meet the needs of different fields.
Ammonium phosphate and diammonium phosphate are both types of fertilizers that contain nitrogen and phosphorus. The main difference between them is the ratio of nitrogen to phosphorus and the chemical structure.
Ammonium phosphate is a general term that refers to any fertilizer containing both ammonium and phosphate. It can have different ratios of nitrogen to phosphorus, such as 10-34-0 or 16-20-0. This means that for every 100 pounds of fertilizer, there are 10 or 16 pounds of nitrogen and 34 or 20 pounds of phosphorus, respectively.
Diammonium phosphate (DAP) is a specific type of ammonium phosphate fertilizer with a ratio of 18-46-0. This means that for every 100 pounds of DAP, there are 18 pounds of nitrogen and 46 pounds of phosphorus. DAP is a highly concentrated fertilizer and is often used in the early stages of plant growth to promote root development.
10.Will define phosphate biology be used in environmental protection projects?
We maintain a certain amount of R&D investment every year and continuously improve operational efficiency to provide better services to our cooperative customers.
Phosphate, a naturally occurring mineral, has been utilized in various industries, such as agriculture and food production, for its highly beneficial properties. With the growing concern over environmental protection, many are wondering if phosphate can also play a role in these initiatives. The answer is a resounding yes. Phosphate has been proven to be effective in several environmental protection projects, such as wastewater treatment and soil remediation. Its ability to bind with heavy metals and other contaminants makes it a valuable tool in cleaning polluted water and soil. Furthermore, its use as a plant fertilizer can reduce the need for harmful chemical fertilizers, promoting sustainable and organic farming practices. As more research is conducted, it is expected that phosphate will continue to contribute to environmental protection efforts in the future.
11.In which industries do define phosphate biology play an important role?
We are a new define phosphate biology manufacturer.
Phosphate is a crucial resource in various industries, making significant contributions to global economies. It is a key ingredient in fertilizers, providing essential nutrients for crop growth and increasing agricultural productivity. Phosphate is also used in the production of animal feed, promoting healthy growth and development in livestock. In addition, it is widely used in the manufacturing of detergents, soaps, and other cleaning products. The pharmaceutical and food industries also heavily rely on phosphate for the production of medicines, nutritional supplements, and food additives. Furthermore, phosphate is an important component in the production of steel and other industrial chemicals. Therefore, phosphate plays a crucial role in agriculture, food production, cleaning, pharmaceuticals, and industrial manufacturing, making it a valuable resource for various industries.
12.Are define phosphate biology common on Earth?
We continuously upgrade our skills and knowledge to adapt to changing define phosphate biology market needs.
Yes, phosphates are common on Earth. They are found in rocks, soils, and water, and are essential for life as they are a key component of DNA, RNA, and ATP (adenosine triphosphate). Phosphates are also used in fertilizers, detergents, and other industrial products.

13.What is the relationship between define phosphate biology and calcium?
As one of the top define phosphate biology manufacturers in China, we take this very seriously.
Phosphate and calcium are essential minerals in the human body and they are closely related in terms of their functions and interactions. Both of them play important roles in maintaining strong bones, teeth and overall skeletal health. Calcium is primarily responsible for providing structural support and strength in bones, while phosphate helps to regulate the calcium levels in the body. In addition, both minerals are vital for proper muscle function, nerve transmission, and hormone production. Phosphate and calcium also work together to support the formation of healthy teeth and maintain the body's acid-base balance. While the human body requires both phosphate and calcium, it is important to maintain a proper balance between the two minerals for optimal health.
14.What effect does define phosphate biology have on plant growth?
Phosphate is an essential nutrient required for plant growth. It plays a crucial role in various vital processes such as photosynthesis, energy transfer, and synthesis of DNA and RNA. When phosphate is limited in the soil, plants may exhibit stunted growth, yellowing of leaves, and reduced root development. However, an adequate supply of phosphate in the soil can promote root growth, improve plant vigor, and increase crop yield. Excess phosphate, on the other hand, can lead to environmental pollution and harm to aquatic life. Therefore, it is crucial for farmers and gardeners to manage phosphate levels carefully to ensure optimal plant growth and promote sustainable agriculture.
15.How to use define phosphate biology safely?
Phosphate is a commonly used chemical compound that has various industrial, agricultural, and household applications. However, it can also be hazardous if not handled and used properly. Here are some tips on how to use phosphate safely:
1. Read and follow the safety instructions provided on the product label or packaging.
2. Wear appropriate protective gear, such as goggles, gloves, and a mask, when handling phosphate.
3. Avoid inhaling or ingesting the product. If contact with skin or eyes occurs, immediately rinse with plenty of water.
4. Store phosphate in a cool, dry, and well-ventilated area, away from sources of heat and ignition.
5. Keep phosphate out of reach of children and pets.
6. When using phosphate in large quantities or for extended periods of time, it is recommended to use it in a well-ventilated area.
7. Dispose of unused or leftover product according to local regulations and guidelines.
By following these safety precautions, you can ensure the safe and responsible use of phosphate.