Product center

Your location: Home - ProductsProducts

SINO-PHOS is mainly engaged in the wholesale and retail of chemical products. Its main products include phosphoric acid, sodium tripolyphosphate, sodium hexametaphosphate, sodium tripophosphate, sodium pyrophosphate, etc. At present, the company's products are widely sold to Namibia,Paraguay,Vietnam,Canada and other countries and regions, and we are also actively exploring other overseas markets. Since its establishment, the company has always adhered to the concept of "integrity, cooperation, win-win, and mission". We are customer-oriented, continue to innovate around customer needs, strictly control product quality, and focus on providing customers with high-quality products and all-round services. In line with the tenet of "pursuit, growth, technology, spirit, and interests", the company now has a group of capable management talents and a high-quality professional team.
Type | Disodium Phosphate |
Place of Origin | Guizhou,china |
Classification | Phosphate |
Other Names | Sodium Phosphate, Dibasic |
MF | Na2HPO4 |
EINECS No. | 231-448-7 |
Grade Standard | Industrial Grade, Reagent Grade |
Appearance | White Powder |
Application | emulgator,etc |
Brand Name | SINO-PHOS |
Model Number | / |
Product name | Sodium Phosphate, Dibasic |
Appearance | White powder |
Content Na2HPO4,( On dry basis),w/% | ≥92 |
Arsenic(As),mg/kg | ≤2 |
Heavy metal(as Pb),mg/kg | ≤9 |
Lead(Pb),mg/kg | ≤3 |
Fluorides(as F),mg/kg | ≤56 |
Insoluble substances,w/% | ≤0.2 |
Loss on drying,w/% | ≤6 |
Packaging Details | 5g/10g/50g/223g/500g/1kg/Bottle |
Supply Ability | 410 Kilogram/Kilograms per Month |
Quantity (grams) | > 201 |
Lead time (days) | 18 |
fgf23 phosphate bearings FAQs Guide fgf23 phosphate, a type of natural mineral often found in rocks, is widely recognized for its significant role in plant and animal growth. As a necessary element for all living organisms, fgf23 phosphate has become an essential component in various industries, including agriculture, food production, and manufacturing. With our advanced technology and expertise, we have developed a series of high-quality fgf23 phosphate products that cater to different needs in the market. Our wide range of solutions not only provides essential nutrients for crops and livestock but also supports the development of sustainable and environmentally friendly processes. Keep reading to learn more about our fgf23 phosphate products and how they can benefit your business.
2.What is the role of fgf23 phosphate in soaps and detergents?
3.How to safely store fgf23 phosphate?
4.What is the difference between fgf23 phosphate and organophosphorus?
5.What are the production processes for fgf23 phosphate?
6.Does fgf23 phosphate promote certain diseases?
7.What are polyfgf23 phosphate?
8.What is the difference between fgf23 phosphate and diammonium fgf23 phosphate?
9.Can fgf23 phosphate be used as fertilizer?
10.What diseases can fgf23 phosphate be used to treat?
11.How to test the fgf23 phosphate content in food?
12.Can fgf23 phosphate be used to make plastic?
13.What are the common forms of fgf23 phosphate?
14.What is the difference between fgf23 phosphate and organic compounds?
15.What is the role of fgf23 phosphate in the food processing industry?
16.What by-products are produced during the production of fgf23 phosphate?
1.What effects do high fgf23 phosphate levels have on the human body?
We should have a stable supply chain and logistics capabilities, and provide customers with high -quality, low -priced fgf23 phosphate products.
High levels of phosphate in the human body can have several negative effects. Phosphate is an essential mineral for various biological processes, such as bone growth and energy production, but excess amounts can be harmful. High phosphate levels can lead to a condition known as hyperphosphatemia, which can cause symptoms such as muscle cramps, fatigue, and cognitive impairment. It can also contribute to bone density loss and increased risk of kidney disease. Additionally, high phosphate levels may disrupt the balance of other important minerals in the body, such as calcium and magnesium. It is important to maintain a healthy balance of phosphate in the body through proper diet and regular monitoring to prevent these potential negative effects.
2.What is the role of fgf23 phosphate in soaps and detergents?
We have rich industry experience and professional knowledge, and have strong competitiveness in the market.
Phosphate is an essential component in both soaps and detergents, playing a crucial role in their effectiveness as cleaning agents. In soaps, phosphate acts as a water softening agent, allowing the soap to lather more easily and effectively remove dirt and oils from surfaces. It also helps to break up and suspend particles in water, preventing them from re-depositing onto cleaned surfaces. In detergents, phosphate serves as a surfactant, reducing the surface tension of water and allowing it to penetrate and remove greasy or oily stains more easily. Additionally, phosphate helps to counteract the effects of hard water, making the detergent more efficient in cleaning. However, the use of phosphate in cleaning products has come under scrutiny due to its negative impact on the environment, specifically in contributing to water pollution and eutrophication. As a result, many manufacturers have started to formulate phosphate-free or low-phosphate alternatives in order to reduce their environmental impact.
3.How to safely store fgf23 phosphate?
We pay attention to employee development and benefits, and provide a good working environment in order to improve the efficiency of employees and improve the quality management of fgf23 phosphate products.
Storing phosphate properly is crucial for safety and environmental reasons. Firstly, ensure that the storage area is dry and well-ventilated to prevent any moisture build-up, which can cause the phosphate to become unstable and potentially combustible. Secondly, make sure to store it away from any sources of heat or open flames, as phosphate can react violently with these. Additionally, it is important to store phosphate away from other chemicals or materials that it could potentially react with. Proper labeling and segregation of storage containers is recommended to avoid any accidental mixing. It is also recommended to regularly inspect and maintain storage containers to prevent any leaks or spills. Finally, always follow the recommended storage instructions from the manufacturer to ensure safe handling and storage of phosphate.
4.What is the difference between fgf23 phosphate and organophosphorus?
Our fgf23 phosphate products have competitive and differentiated advantages, and actively promote digital transformation and innovation. Phosphate refers to a chemical compound containing phosphorus and oxygen atoms, such as phosphates found in fertilizers and detergents. It is also an essential nutrient for plants and animals. Organophosphorus, on the other hand, refers to a class of chemical compounds that contain phosphorus and carbon atoms bonded together. These compounds are often used as pesticides, herbicides, and nerve agents. They can be highly toxic to humans and other organisms. In summary, phosphate is a specific type of chemical compound, while organophosphorus is a broader term that refers to a class of compounds.

5.What are the production processes for fgf23 phosphate?
We focus on teamwork and communication to achieve common goals, We attach great importance to this detail.
Phosphate, also known as phosphate rock, is a mineral that is typically found in sedimentary rocks. It is an essential nutrient for plant growth and is commonly used in fertilizer production. The production processes for phosphate involve mining and extraction of the mineral from ore deposits, followed by washing, crushing, and grinding to create a powdered form. The powdered form is then treated with sulfuric acid to produce phosphoric acid, which is used as a key ingredient in most fertilizers. Additional steps may be taken to refine the phosphoric acid into a more concentrated form, or to produce various types of phosphate fertilizers. The production of phosphate is an important industry worldwide, providing essential nutrients for plants and helping to increase crop yields.
6.Does fgf23 phosphate promote certain diseases?
We focus on providing high fgf23 phosphate quality products and services.
There is no evidence to suggest that phosphate directly promotes certain diseases. However, excessive intake of phosphate through diet or supplements can lead to health issues such as kidney disease, heart disease, and osteoporosis. Additionally, high levels of phosphate in the body can disrupt the balance of other minerals, such as calcium, which can contribute to the development of certain diseases. It is important to maintain a balanced intake of phosphate and other minerals for overall health and disease prevention.
7.What are polyfgf23 phosphate?
We focus on innovation and continuous improvement to maintain a competitive advantage.
Polyphosphates are a group of compounds that contain multiple phosphate groups linked together. They can be found naturally in some foods, such as meat and dairy products, and are also used as food additives to improve texture, prevent spoilage, and enhance flavor. In addition, polyphosphates are used in industrial and household products, such as detergents and water treatment chemicals, for their ability to bind to minerals and prevent scale buildup. They are also used in some medications and as fertilizers in agriculture.
8.What is the difference between fgf23 phosphate and diammonium fgf23 phosphate?
We operate our fgf23 phosphate business with integrity and honesty.
Phosphate refers to any compound containing the phosphate ion (PO4^3-), while diammonium phosphate (DAP) specifically refers to a compound with the chemical formula (NH4)2HPO4. DAP is a type of phosphate fertilizer commonly used in agriculture, while phosphate can refer to a variety of compounds with different uses and properties.

9.Can fgf23 phosphate be used as fertilizer?
Our fgf23 phosphate products undergo strict quality control to ensure customer satisfaction.
Yes, phosphate is commonly used as a fertilizer in agriculture. It is a major component of most commercial fertilizers and is essential for plant growth and development. Phosphate helps plants to develop strong roots, promotes flower and fruit production, and aids in the transfer of energy within the plant. It is also an important nutrient for crop yield and quality. However, excessive use of phosphate fertilizers can lead to environmental pollution and eutrophication of water bodies. Therefore, it is important to use phosphate fertilizers in a responsible and sustainable manner.
10.What diseases can fgf23 phosphate be used to treat?
We adhere to the principle of quality first and have a complete production quality management system and quality inspection process.
Phosphate, one of the essential mineral components in our body, has been widely used in treating various diseases. It is commonly used in the treatment of osteoporosis, a condition characterized by low bone density and increased risk of fractures. Phosphate is also utilized in the treatment of kidney diseases, including kidney failure and renal tubular acidosis, where it helps to regulate electrolyte balance and maintain healthy kidney function. In addition, phosphate has been shown to be beneficial in managing certain genetic disorders that affect phosphate metabolism, such as hypophosphatemia and familial hypophosphatemic rickets. Furthermore, phosphate is used in the treatment of some inflammatory diseases, such as inflammatory bowel disease, due to its anti-inflammatory properties.
11.How to test the fgf23 phosphate content in food?
We have a first -class management team, and we pay attention to teamwork to achieve common goals.
There are several methods for testing the phosphate content in food. One common method is to use a colorimetric test that relies on the reaction between phosphate ions and a reagent solution. This test produces a color change that can be compared to a color chart to determine the level of phosphate present in the food sample. Another method is to use ion chromatography, which involves separating and quantifying the different ions present in the food sample. This method provides a more precise measurement of phosphate levels. Additionally, some food manufacturers may use in-house laboratory testing or send samples to external laboratories for more comprehensive analysis. No matter the method used, it is important to follow proper protocols and use reliable equipment to ensure accurate results. Regular testing of phosphate levels in food is crucial for maintaining food safety and ensuring compliance with regulatory standards.
12.Can fgf23 phosphate be used to make plastic?
Yes, phosphate can be used to make plastic. Phosphate-based plastics, also known as polyphosphates, are a type of thermoplastic polymer that can be used to make a variety of products, including packaging materials, coatings, and adhesives. These plastics are made by polymerizing phosphoric acid or its derivatives, such as phosphoric anhydride, with other monomers. They are known for their high strength, durability, and resistance to heat and chemicals. However, due to concerns about the environmental impact of phosphate mining and production, alternative materials are being developed to replace phosphate-based plastics.

13.What are the common forms of fgf23 phosphate?
We have flexible production capacity. Whether you are large orders or small orders, you can produce and release goods in a timely manner to meet customer needs.
1. Calcium phosphate: This is the most common form of phosphate found in nature and is the main component of bones and teeth.
2. Sodium phosphate: This form of phosphate is commonly used as a food additive and is also found in some medications.
3. Potassium phosphate: This form of phosphate is used as a fertilizer and is also found in some food products.
4. Magnesium phosphate: This form of phosphate is found in the body and is important for bone health and energy production.
5. Ammonium phosphate: This form of phosphate is used as a fertilizer and is also found in some cleaning products.
6. Dicalcium phosphate: This form of phosphate is commonly used as a dietary supplement and is also found in some toothpastes.
7. Monoammonium phosphate: This form of phosphate is used as a fertilizer and is also found in some fire extinguishers.
8. Tricalcium phosphate: This form of phosphate is used as a food additive and is also found in some toothpastes and cosmetics.
9. Disodium phosphate: This form of phosphate is used as a food additive and is also found in some cleaning products.
10. Tetrasodium pyrophosphate: This form of phosphate is used as a food additive and is also found in some toothpastes and detergents.
14.What is the difference between fgf23 phosphate and organic compounds?
Phosphate refers to a specific chemical compound containing the element phosphorus, while organic compounds refer to a broad category of compounds that contain carbon and are found in living organisms. Phosphate is a type of inorganic compound, meaning it does not contain carbon, while organic compounds are characterized by the presence of carbon-hydrogen bonds. Additionally, phosphate is often used as a source of energy in biological processes, while organic compounds can serve a variety of functions such as structural support, energy storage, and signaling.
15.What is the role of fgf23 phosphate in the food processing industry?
We are centered on customers and always pay attention to customers' needs for fgf23 phosphate products.
Phosphate plays a crucial role in the food processing industry. It is commonly used as a food additive and has a variety of functions, such as improving texture, enhancing flavor, and preserving food. Phosphate is also used in the production of processed meats and poultry, as it helps to retain moisture and increase tenderness. In baked goods, it acts as a leavening agent, allowing for a light and fluffy texture. Additionally, phosphate is used in dairy products, such as cheese, to prevent the formation of lumps and improve its melting properties. Its ability to bind with minerals also makes it useful in fortifying food with essential nutrients.
16.What by-products are produced during the production of fgf23 phosphate?
Our company has many years of fgf23 phosphate experience and expertise.
During the production process of phosphate, various by-products are produced. These include sulfuric acid, which is used in the initial step of phosphate production, as well as gypsum, which is a by-product of the neutralization process. Other by-products include fluoride gases, which are created during the acidulation process, and phosphogypsum, a solid waste produced during the production of phosphoric acid. Additionally, various heavy metals, such as cadmium, nickel, and lead, can also be produced depending on the type of phosphate ore being processed. These by-products require proper handling and disposal to minimize their impact on the environment.
