Product center

Your location: Home - ProductsProducts

Guizhou SINO-PHOS Chemical Co., Ltd. is a company specializing in the production and sales of phosphate chemical products, headquartered in Guizhou, China. Since the establishment of the company, we have been committed to the research, development and production of phosphoric acid and phosphates, providing the highest quality chemical solutions to customers in various industries around the world.
Our main products include phosphoric acid, sodium tripolyphosphate, sodium hexametaphosphate, sodium tripophosphate, sodium pyrophosphate, etc. SINO-PHOS produces and tests products in strict accordance with international quality standards to ensure product purity and quality. Provide customers with better products and services. These products are very popular in French Polynesia,New Caledonia,Barbados, the United States and Japan. Won high praise from customers.
Type | DIAMMONIUM PHOSPHATE |
Place of Origin | Guizhou, China |
Classification | hi yield super phosphate |
Other Names | DAP |
MF | NH4H2PO4 |
EINECS No. | Other |
Grade Standard | Agriculture Grade, Food Grade, Industrial Grade |
Appearance | white powder |
Application | Food Grade;Agriculture Grade;Industrial Grade |
Brand Name | ydaway |
Model Number | food grade |
Supply Ability | 9500 Ton/Tons per Month |
Quantity (kilograms) | > 10728238 |
Lead time (days) | 14 |
hi yield super phosphate bearings FAQs Guide hi yield super phosphate, a type of natural mineral often found in rocks, is widely recognized for its significant role in plant and animal growth. As a necessary element for all living organisms, hi yield super phosphate has become an essential component in various industries, including agriculture, food production, and manufacturing. With our advanced technology and expertise, we have developed a series of high-quality hi yield super phosphate products that cater to different needs in the market. Our wide range of solutions not only provides essential nutrients for crops and livestock but also supports the development of sustainable and environmentally friendly processes. Keep reading to learn more about our hi yield super phosphate products and how they can benefit your business.
2.What is the difference between hi yield super phosphate and organic compounds?
3.Can hi yield super phosphate be used as agricultural conservation agent?
4.How are the functions and structure of hi yield super phosphate related?
5.What are the production processes for hi yield super phosphate?
6.What is the difference between hi yield super phosphate and organic fertilizers?
7.What is anionic hi yield super phosphate?
8.Does hi yield super phosphate promote certain diseases?
9.What is the role of catalysts in the hi yield super phosphate industry?
10.hi yield super phosphate What technology is used in making polyhi yield super phosphate?
11.Will hi yield super phosphate be used in environmental protection projects?
12.In which industries do hi yield super phosphate play an important role?
13.Can hi yield super phosphate be used as fertilizer?
14.What diseases can hi yield super phosphate be used to treat?
15.How is hi yield super phosphate extracted?
1.What are the characteristics of dual-nutrient fertilizers of hi yield super phosphate and diammonium hi yield super phosphate?
Dual-nutrient fertilizers that contain both phosphate and diammonium phosphate have several key characteristics that make them beneficial for plant growth. First, these fertilizers provide a balanced blend of phosphorous and nitrogen, two essential nutrients for plant development. Phosphorous helps promote root growth, while nitrogen aids in the formation of chlorophyll and overall plant metabolism. Secondly, the dual-nutrient combination allows for efficient and even distribution of nutrients throughout the soil, resulting in uniform plant growth. Additionally, these fertilizers have a low salt index, meaning they will not cause fertilizer burn or damage to plant roots. The slow-release properties of phosphate and diammonium phosphate also contribute to long-lasting effects, reducing the need for frequent reapplication.
2.What is the difference between hi yield super phosphate and organic compounds?
Phosphate refers to a specific chemical compound containing the element phosphorus, while organic compounds refer to a broad category of compounds that contain carbon and are found in living organisms. Phosphate is a type of inorganic compound, meaning it does not contain carbon, while organic compounds are characterized by the presence of carbon-hydrogen bonds. Additionally, phosphate is often used as a source of energy in biological processes, while organic compounds can serve a variety of functions such as structural support, energy storage, and signaling.
3.Can hi yield super phosphate be used as agricultural conservation agent?
We have established long-term and stable partnerships with our suppliers, so we have great advantages in price and cost and quality assurance.
Yes, phosphate can be used as an agricultural conservation agent. Phosphate is an essential nutrient for plant growth and is commonly used as a fertilizer in agriculture. It helps to promote root growth, increase crop yield, and improve plant health. In addition, phosphate can also act as a soil conservation agent by improving soil structure, reducing erosion, and increasing water retention. However, excessive use of phosphate can lead to environmental issues such as water pollution, so it is important to use it in moderation and follow recommended application rates.

4.How are the functions and structure of hi yield super phosphate related?
Phosphate is an important chemical compound that is essential for various biological processes and is found in many minerals, soils, and living cells. Its functions are closely related to its unique structure, containing one central phosphorus atom bonded to four oxygen atoms. This structure allows phosphate to act as a versatile molecule, serving as a structural component in molecules like DNA and RNA, an energy source in the form of ATP, and a regulatory substance in biochemical reactions. Additionally, its structure also allows it to form strong bonds with other molecules, making it vital for cellular communication and signaling. This close relationship between the functions and structure of phosphate highlights its significance in maintaining the delicate balance and efficiency of various biological systems.
5.What are the production processes for hi yield super phosphate?
We focus on teamwork and communication to achieve common goals, We attach great importance to this detail.
Phosphate, also known as phosphate rock, is a mineral that is typically found in sedimentary rocks. It is an essential nutrient for plant growth and is commonly used in fertilizer production. The production processes for phosphate involve mining and extraction of the mineral from ore deposits, followed by washing, crushing, and grinding to create a powdered form. The powdered form is then treated with sulfuric acid to produce phosphoric acid, which is used as a key ingredient in most fertilizers. Additional steps may be taken to refine the phosphoric acid into a more concentrated form, or to produce various types of phosphate fertilizers. The production of phosphate is an important industry worldwide, providing essential nutrients for plants and helping to increase crop yields.
6.What is the difference between hi yield super phosphate and organic fertilizers?
Phosphate and organic fertilizers are two commonly used types of fertilizers in agriculture, but they differ in their origin, composition, and benefits. Phosphate fertilizers are made from mined rock phosphate and contain high levels of phosphorus, an essential nutrient for plant growth. On the other hand, organic fertilizers are derived from natural sources such as animal manure, compost, and crop residues. They are rich in organic matter and micronutrients, which help improve soil health and increase crop yields. While phosphate fertilizers show immediate results, organic fertilizers provide a slow release of nutrients, leading to long-term soil fertility. Additionally, organic fertilizers are more environmentally friendly and sustainable, while phosphate fertilizers can have negative impacts on the environment if overused.

7.What is anionic hi yield super phosphate?
We actively participate in the hi yield super phosphate industry associations and organization activities. The corporate social responsibility performed well, and the focus of brand building and promotion
Anionic phosphate refers to a negatively charged ion that contains one phosphorus atom and four oxygen atoms, with a chemical formula of PO4^3-. It is commonly found in various compounds, such as phosphates in fertilizers and phospholipids in cell membranes. Anionic phosphate plays important roles in biological processes, such as energy storage and transfer, DNA and RNA synthesis, and bone formation.
8.Does hi yield super phosphate promote certain diseases?
We focus on providing high hi yield super phosphate quality products and services.
There is no evidence to suggest that phosphate directly promotes certain diseases. However, excessive intake of phosphate through diet or supplements can lead to health issues such as kidney disease, heart disease, and osteoporosis. Additionally, high levels of phosphate in the body can disrupt the balance of other minerals, such as calcium, which can contribute to the development of certain diseases. It is important to maintain a balanced intake of phosphate and other minerals for overall health and disease prevention.
9.What is the role of catalysts in the hi yield super phosphate industry?
We have established a good reputation and reliable partnerships within the hi yield super phosphate industry.
Catalysts are an essential component in the phosphate industry, playing a key role in the production of vital fertilizers and other phosphates for industrial use. They serve as a facilitator, accelerating the chemical reactions involved in phosphate production, thereby increasing efficiency and reducing costs. These catalysts also help improve the quality and purity of the final product, ensuring that it meets regulatory standards. In addition, they enable the use of more sustainable and environmentally friendly processes, making the phosphate industry more efficient and sustainable. Without catalysts, the production of phosphates would be significantly slower and more expensive, making them a crucial element in the industry.

10.hi yield super phosphate What technology is used in making polyhi yield super phosphate?
We have advanced production equipment and technology to meet the needs of customers, and can provide customers with high quality, low priced hi yield super phosphate products.
The technology used in making polyphosphate is typically a chemical process called polymerization. This involves combining monomers (smaller molecules) to form long chains of repeating units, known as polymers. In the case of polyphosphate, the monomers are typically phosphoric acid or phosphates, which are combined to form long chains of phosphate molecules.
The process of polymerization can be carried out using various methods, including solution polymerization, emulsion polymerization, and suspension polymerization. These methods involve mixing the monomers with a catalyst and other additives, and then subjecting the mixture to heat, pressure, or radiation to initiate the polymerization reaction.
Once the polymerization is complete, the resulting polyphosphate can be further processed and modified to meet specific requirements for different applications. This may involve adding other chemicals, blending with other polymers, or shaping the polyphosphate into different forms, such as pellets, sheets, or fibers.
11.Will hi yield super phosphate be used in environmental protection projects?
We maintain a certain amount of R&D investment every year and continuously improve operational efficiency to provide better services to our cooperative customers.
Phosphate, a naturally occurring mineral, has been utilized in various industries, such as agriculture and food production, for its highly beneficial properties. With the growing concern over environmental protection, many are wondering if phosphate can also play a role in these initiatives. The answer is a resounding yes. Phosphate has been proven to be effective in several environmental protection projects, such as wastewater treatment and soil remediation. Its ability to bind with heavy metals and other contaminants makes it a valuable tool in cleaning polluted water and soil. Furthermore, its use as a plant fertilizer can reduce the need for harmful chemical fertilizers, promoting sustainable and organic farming practices. As more research is conducted, it is expected that phosphate will continue to contribute to environmental protection efforts in the future.
12.In which industries do hi yield super phosphate play an important role?
We are a new hi yield super phosphate manufacturer.
Phosphate is a crucial resource in various industries, making significant contributions to global economies. It is a key ingredient in fertilizers, providing essential nutrients for crop growth and increasing agricultural productivity. Phosphate is also used in the production of animal feed, promoting healthy growth and development in livestock. In addition, it is widely used in the manufacturing of detergents, soaps, and other cleaning products. The pharmaceutical and food industries also heavily rely on phosphate for the production of medicines, nutritional supplements, and food additives. Furthermore, phosphate is an important component in the production of steel and other industrial chemicals. Therefore, phosphate plays a crucial role in agriculture, food production, cleaning, pharmaceuticals, and industrial manufacturing, making it a valuable resource for various industries.

13.Can hi yield super phosphate be used as fertilizer?
Our hi yield super phosphate products undergo strict quality control to ensure customer satisfaction.
Yes, phosphate is commonly used as a fertilizer in agriculture. It is a major component of most commercial fertilizers and is essential for plant growth and development. Phosphate helps plants to develop strong roots, promotes flower and fruit production, and aids in the transfer of energy within the plant. It is also an important nutrient for crop yield and quality. However, excessive use of phosphate fertilizers can lead to environmental pollution and eutrophication of water bodies. Therefore, it is important to use phosphate fertilizers in a responsible and sustainable manner.
14.What diseases can hi yield super phosphate be used to treat?
We adhere to the principle of quality first and have a complete production quality management system and quality inspection process.
Phosphate, one of the essential mineral components in our body, has been widely used in treating various diseases. It is commonly used in the treatment of osteoporosis, a condition characterized by low bone density and increased risk of fractures. Phosphate is also utilized in the treatment of kidney diseases, including kidney failure and renal tubular acidosis, where it helps to regulate electrolyte balance and maintain healthy kidney function. In addition, phosphate has been shown to be beneficial in managing certain genetic disorders that affect phosphate metabolism, such as hypophosphatemia and familial hypophosphatemic rickets. Furthermore, phosphate is used in the treatment of some inflammatory diseases, such as inflammatory bowel disease, due to its anti-inflammatory properties.
15.How is hi yield super phosphate extracted?
We continue to improve hi yield super phosphate products and processes to improve efficiency.
Phosphate is typically extracted through open-pit mining, which involves digging a large hole in the ground and removing the layers of phosphate-rich rock. The extracted rock is then crushed and processed to separate the phosphate from other minerals. This process may also involve washing, screening, and flotation to further refine the phosphate. In some cases, underground mining may also be used to extract phosphate deposits.
