Product center

Your location: Home - ProductsProducts

Guizhou SINO-PHOS Chemical Co., Ltd. is a company with more than 18 years of experience specializing in the production and supply of a series of chemical products. SINO-PHOS has advanced production lines and scientific research teams. We can provide OEM services and solutions. Strict quality control and excellent service have made us among the reliable suppliers for many well-known brands in the world. The main products include phosphoric acid, sodium tripolyphosphate, sodium hexametaphosphate, sodium tripophosphate, sodium pyrophosphate, etc. At present, it has formed an annual production scale of 30,000 tons of phosphate and 60,000 tons of phosphate. In 2009, the company passed ISO9001 international quality system certification.
All SINO-PHOS products comply with international quality standards, and customers come from different markets around the world. For example Austria,Afghanistan,Burma,Bulgaria etc. Nearly one-third of our clients have been with us for more than ten years. Thinking what customers think and doing what customers think, we sincerely hope to establish long-term friendly cooperative relations with more friends at home and abroad to develop together and embrace fruitful results!
Type | Disodium Phosphate |
Place of Origin | Guizhou,china |
Classification | Phosphate |
Other Names | Sodium Phosphate, Dibasic |
MF | Na2HPO4 |
EINECS No. | 231-448-7 |
Grade Standard | Industrial Grade, Reagent Grade |
Appearance | White Powder |
Application | emulgator,etc |
Brand Name | SINO-PHOS |
Model Number | / |
Product name | Sodium Phosphate, Dibasic |
Appearance | White powder |
Content Na2HPO4,( On dry basis),w/% | ≥97 |
Arsenic(As),mg/kg | ≤4 |
Heavy metal(as Pb),mg/kg | ≤12 |
Lead(Pb),mg/kg | ≤2 |
Fluorides(as F),mg/kg | ≤42 |
Insoluble substances,w/% | ≤0.2 |
Loss on drying,w/% | ≤5 |
Packaging Details | 5g/10g/50g/155g/500g/1kg/Bottle |
Supply Ability | 439 Kilogram/Kilograms per Month |
Quantity (grams) | > 253 |
Lead time (days) | 20 |
hydrogen phosphate acid bearings FAQs Guide hydrogen phosphate acid, a type of natural mineral often found in rocks, is widely recognized for its significant role in plant and animal growth. As a necessary element for all living organisms, hydrogen phosphate acid has become an essential component in various industries, including agriculture, food production, and manufacturing. With our advanced technology and expertise, we have developed a series of high-quality hydrogen phosphate acid products that cater to different needs in the market. Our wide range of solutions not only provides essential nutrients for crops and livestock but also supports the development of sustainable and environmentally friendly processes. Keep reading to learn more about our hydrogen phosphate acid products and how they can benefit your business.
2.What is the relationship between hydrogen phosphate acid and calcium?
3.What is the difference between ammonium hydrogen phosphate acid and diammonium hydrogen phosphate acid?
4.What is the chemical structure of hydrogen phosphate acid?
5.What is the relationship between hydrogen phosphate acid and hydrogen phosphate acid fertilizer?
6.What is the difference between hydrogen phosphate acid and organic compounds?
7.What hydrogen phosphate acid are produced during denitrification?
8.In which industries do hydrogen phosphate acid play an important role?
9.Can hydrogen phosphate acid be used as fertilizer?
10.How are the functions and structure of hydrogen phosphate acid related?
11.Which countries have the largest international hydrogen phosphate acid production?
12.hydrogen phosphate acid What technology is used in making polyhydrogen phosphate acid?
13.What are polyhydrogen phosphate acid?
14.How is hydrogen phosphate acid extracted?
1.What impact do hydrogen phosphate acid have on the environment?
Phosphate plays a crucial role in fertilizers, detergents, and animal feeds, making it an important component of modern society. However, the widespread use of phosphate also has significant impacts on the environment. Excessive release of phosphate into the environment can lead to eutrophication, where an increase in nutrients causes excessive algae growth, leading to oxygen depletion and harm to aquatic organisms. Phosphate runoff from agricultural activities can also pollute water sources and harm sensitive ecosystems. In addition, phosphate mining can lead to land degradation and loss of biodiversity. To mitigate these negative impacts, sustainable practices and regulations must be implemented to properly manage and limit phosphate use.
2.What is the relationship between hydrogen phosphate acid and calcium?
As one of the top hydrogen phosphate acid manufacturers in China, we take this very seriously.
Phosphate and calcium are essential minerals in the human body and they are closely related in terms of their functions and interactions. Both of them play important roles in maintaining strong bones, teeth and overall skeletal health. Calcium is primarily responsible for providing structural support and strength in bones, while phosphate helps to regulate the calcium levels in the body. In addition, both minerals are vital for proper muscle function, nerve transmission, and hormone production. Phosphate and calcium also work together to support the formation of healthy teeth and maintain the body's acid-base balance. While the human body requires both phosphate and calcium, it is important to maintain a proper balance between the two minerals for optimal health.
3.What is the difference between ammonium hydrogen phosphate acid and diammonium hydrogen phosphate acid?
Our products & services cover a wide range of areas and meet the needs of different fields.
Ammonium phosphate and diammonium phosphate are both types of fertilizers that contain nitrogen and phosphorus. The main difference between them is the ratio of nitrogen to phosphorus and the chemical structure.
Ammonium phosphate is a general term that refers to any fertilizer containing both ammonium and phosphate. It can have different ratios of nitrogen to phosphorus, such as 10-34-0 or 16-20-0. This means that for every 100 pounds of fertilizer, there are 10 or 16 pounds of nitrogen and 34 or 20 pounds of phosphorus, respectively.
Diammonium phosphate (DAP) is a specific type of ammonium phosphate fertilizer with a ratio of 18-46-0. This means that for every 100 pounds of DAP, there are 18 pounds of nitrogen and 46 pounds of phosphorus. DAP is a highly concentrated fertilizer and is often used in the early stages of plant growth to promote root development.
4.What is the chemical structure of hydrogen phosphate acid?
We have a professional team that is committed to the innovation and development of hydrogen phosphate acid.
The chemical structure of phosphate is a polyatomic ion with the chemical formula PO4^3-. It consists of one phosphorus atom bonded to four oxygen atoms in a tetrahedral arrangement. The phosphorus atom is in the center, with three single bonds to oxygen atoms and one double bond to another oxygen atom. The overall charge of the ion is negative three.

5.What is the relationship between hydrogen phosphate acid and hydrogen phosphate acid fertilizer?
We maintain a stable growth through reasonable capital operations, focus on industry development trends and cutting -edge technologies, and focus on product quality and safety performance.
Phosphate is a naturally occurring mineral that contains the element phosphorus. Phosphate fertilizer is a type of fertilizer that is made from phosphate minerals and is used to provide plants with essential nutrients, particularly phosphorus, for growth and development.
Phosphate fertilizer is made by extracting phosphate minerals from rocks or sedimentary deposits and processing them into a form that can be easily absorbed by plants. This process involves treating the phosphate minerals with acids or other chemicals to make them more soluble and available for plant uptake.
Phosphate fertilizer is an important source of phosphorus for plants, as it helps to promote root growth, seed formation, and overall plant health. It is commonly used in agriculture to increase crop yields and improve soil fertility.
In summary, phosphate is the mineral that contains phosphorus, while phosphate fertilizer is a product made from phosphate minerals that is used to provide plants with essential nutrients, particularly phosphorus, for growth and development.
6.What is the difference between hydrogen phosphate acid and organic compounds?
Phosphate refers to a specific chemical compound containing the element phosphorus, while organic compounds refer to a broad category of compounds that contain carbon and are found in living organisms. Phosphate is a type of inorganic compound, meaning it does not contain carbon, while organic compounds are characterized by the presence of carbon-hydrogen bonds. Additionally, phosphate is often used as a source of energy in biological processes, while organic compounds can serve a variety of functions such as structural support, energy storage, and signaling.
7.What hydrogen phosphate acid are produced during denitrification?
No phosphate is produced during denitrification. Denitrification is a process in which nitrate (NO3-) is converted into nitrogen gas (N2) by bacteria, and does not involve the production of phosphate.
8.In which industries do hydrogen phosphate acid play an important role?
We are a new hydrogen phosphate acid manufacturer.
Phosphate is a crucial resource in various industries, making significant contributions to global economies. It is a key ingredient in fertilizers, providing essential nutrients for crop growth and increasing agricultural productivity. Phosphate is also used in the production of animal feed, promoting healthy growth and development in livestock. In addition, it is widely used in the manufacturing of detergents, soaps, and other cleaning products. The pharmaceutical and food industries also heavily rely on phosphate for the production of medicines, nutritional supplements, and food additives. Furthermore, phosphate is an important component in the production of steel and other industrial chemicals. Therefore, phosphate plays a crucial role in agriculture, food production, cleaning, pharmaceuticals, and industrial manufacturing, making it a valuable resource for various industries.

9.Can hydrogen phosphate acid be used as fertilizer?
Our hydrogen phosphate acid products undergo strict quality control to ensure customer satisfaction.
Yes, phosphate is commonly used as a fertilizer in agriculture. It is a major component of most commercial fertilizers and is essential for plant growth and development. Phosphate helps plants to develop strong roots, promotes flower and fruit production, and aids in the transfer of energy within the plant. It is also an important nutrient for crop yield and quality. However, excessive use of phosphate fertilizers can lead to environmental pollution and eutrophication of water bodies. Therefore, it is important to use phosphate fertilizers in a responsible and sustainable manner.
10.How are the functions and structure of hydrogen phosphate acid related?
Phosphate is an important chemical compound that is essential for various biological processes and is found in many minerals, soils, and living cells. Its functions are closely related to its unique structure, containing one central phosphorus atom bonded to four oxygen atoms. This structure allows phosphate to act as a versatile molecule, serving as a structural component in molecules like DNA and RNA, an energy source in the form of ATP, and a regulatory substance in biochemical reactions. Additionally, its structure also allows it to form strong bonds with other molecules, making it vital for cellular communication and signaling. This close relationship between the functions and structure of phosphate highlights its significance in maintaining the delicate balance and efficiency of various biological systems.
11.Which countries have the largest international hydrogen phosphate acid production?
1. China
2. Morocco
3. United States
4. Russia
5. Jordan
6. Saudi Arabia
7. Egypt
8. Brazil
9. Tunisia
10. Israel
12.hydrogen phosphate acid What technology is used in making polyhydrogen phosphate acid?
We have advanced production equipment and technology to meet the needs of customers, and can provide customers with high quality, low priced hydrogen phosphate acid products.
The technology used in making polyphosphate is typically a chemical process called polymerization. This involves combining monomers (smaller molecules) to form long chains of repeating units, known as polymers. In the case of polyphosphate, the monomers are typically phosphoric acid or phosphates, which are combined to form long chains of phosphate molecules.
The process of polymerization can be carried out using various methods, including solution polymerization, emulsion polymerization, and suspension polymerization. These methods involve mixing the monomers with a catalyst and other additives, and then subjecting the mixture to heat, pressure, or radiation to initiate the polymerization reaction.
Once the polymerization is complete, the resulting polyphosphate can be further processed and modified to meet specific requirements for different applications. This may involve adding other chemicals, blending with other polymers, or shaping the polyphosphate into different forms, such as pellets, sheets, or fibers.

13.What are polyhydrogen phosphate acid?
We focus on innovation and continuous improvement to maintain a competitive advantage.
Polyphosphates are a group of compounds that contain multiple phosphate groups linked together. They can be found naturally in some foods, such as meat and dairy products, and are also used as food additives to improve texture, prevent spoilage, and enhance flavor. In addition, polyphosphates are used in industrial and household products, such as detergents and water treatment chemicals, for their ability to bind to minerals and prevent scale buildup. They are also used in some medications and as fertilizers in agriculture.
14.How is hydrogen phosphate acid extracted?
We continue to improve hydrogen phosphate acid products and processes to improve efficiency.
Phosphate is typically extracted through open-pit mining, which involves digging a large hole in the ground and removing the layers of phosphate-rich rock. The extracted rock is then crushed and processed to separate the phosphate from other minerals. This process may also involve washing, screening, and flotation to further refine the phosphate. In some cases, underground mining may also be used to extract phosphate deposits.