Product center

Your location: Home - ProductsProducts

Guizhou SINO-PHOS Chemical Co., Ltd. specializes in the production of phosphoric acid and phosphates. Our company's main products include phosphoric acid, sodium tripolyphosphate, sodium hexametaphosphate, sodium tripophosphate, sodium pyrophosphate, etc. At present, it has formed an annual production scale of 30,000 tons of phosphate and 60,000 tons of phosphate. In 2009, the company passed ISO9001 international quality system certification.
All SINO-PHOS products are qualified, laying a good foundation for sustainable development. And it was successfully put into trial production in July 2009. Using continuous drying and dehydration technology, it is environmentally friendly, energy-saving and stable. Wire. Moreover, the electroplated TKPP produced by this production line meets industry standards and can replace imported products. SINO-PHOS focuses on the phosphate industry. Our products have entered many foreign countries such as Barbados,Somalia,Cape Verde, providing customers with high-quality products and reasonable prices.
Type | Disodium Phosphate |
Place of Origin | Guizhou,china |
Classification | Phosphate |
Other Names | Sodium Phosphate, Dibasic |
MF | Na2HPO4 |
EINECS No. | 231-448-7 |
Grade Standard | Industrial Grade, Reagent Grade |
Appearance | White Powder |
Application | emulgator,etc |
Brand Name | SINO-PHOS |
Model Number | / |
Product name | Sodium Phosphate, Dibasic |
Appearance | White powder |
Content Na2HPO4,( On dry basis),w/% | ≥91 |
Arsenic(As),mg/kg | ≤3 |
Heavy metal(as Pb),mg/kg | ≤10 |
Lead(Pb),mg/kg | ≤5 |
Fluorides(as F),mg/kg | ≤53 |
Insoluble substances,w/% | ≤0.2 |
Loss on drying,w/% | ≤5 |
Packaging Details | 5g/10g/50g/281g/500g/1kg/Bottle |
Supply Ability | 466 Kilogram/Kilograms per Month |
Quantity (grams) | > 152 |
Lead time (days) | 14 |
life phosphate battery bearings FAQs Guide
life phosphate battery, a type of natural mineral often found in rocks, is widely recognized for its significant role in plant and animal growth. As a necessary element for all living organisms, life phosphate battery has become an essential component in various industries, including agriculture, food production, and manufacturing. With our advanced technology and expertise, we have developed a series of high-quality life phosphate battery products that cater to different needs in the market. Our wide range of solutions not only provides essential nutrients for crops and livestock but also supports the development of sustainable and environmentally friendly processes. Keep reading to learn more about our life phosphate battery products and how they can benefit your business.
2.What is the difference between ammonium life phosphate battery and diammonium life phosphate battery?
3.What are the characteristics of magnesium life phosphate battery?
4.Can life phosphate battery be used to make batteries?
5.What effects does life phosphate battery have on human health?
6.How are the functions and structure of life phosphate battery related?
7.What are the uses of life phosphate battery in the pharmaceutical industry?
8.life phosphate battery What technology is used in making polylife phosphate battery?
9.What are polylife phosphate battery?
10.What is the global production of life phosphate battery?
11.What is the difference between life phosphate battery and organic compounds?
12.Are life phosphate battery harmful to animals?
13.Why is life phosphate battery used in agriculture?
14.What are the environmental benefits of life phosphate battery recycling?
15.What effects do high life phosphate battery levels have on the human body?
16.Can life phosphate battery be used as agricultural conservation agent?
1.What is the difference between life phosphate battery and organic fertilizers?
Phosphate and organic fertilizers are two commonly used types of fertilizers in agriculture, but they differ in their origin, composition, and benefits. Phosphate fertilizers are made from mined rock phosphate and contain high levels of phosphorus, an essential nutrient for plant growth. On the other hand, organic fertilizers are derived from natural sources such as animal manure, compost, and crop residues. They are rich in organic matter and micronutrients, which help improve soil health and increase crop yields. While phosphate fertilizers show immediate results, organic fertilizers provide a slow release of nutrients, leading to long-term soil fertility. Additionally, organic fertilizers are more environmentally friendly and sustainable, while phosphate fertilizers can have negative impacts on the environment if overused.
2.What is the difference between ammonium life phosphate battery and diammonium life phosphate battery?
Our products & services cover a wide range of areas and meet the needs of different fields.
Ammonium phosphate and diammonium phosphate are both types of fertilizers that contain nitrogen and phosphorus. The main difference between them is the ratio of nitrogen to phosphorus and the chemical structure.
Ammonium phosphate is a general term that refers to any fertilizer containing both ammonium and phosphate. It can have different ratios of nitrogen to phosphorus, such as 10-34-0 or 16-20-0. This means that for every 100 pounds of fertilizer, there are 10 or 16 pounds of nitrogen and 34 or 20 pounds of phosphorus, respectively.
Diammonium phosphate (DAP) is a specific type of ammonium phosphate fertilizer with a ratio of 18-46-0. This means that for every 100 pounds of DAP, there are 18 pounds of nitrogen and 46 pounds of phosphorus. DAP is a highly concentrated fertilizer and is often used in the early stages of plant growth to promote root development.
3.What are the characteristics of magnesium life phosphate battery?
We enjoy high authority and influence in the industry and continue to innovate products and service models.
Magnesium phosphate is a compound that consists of magnesium and phosphate ions. It is a white, odorless solid that is commonly used in various industries such as food, fertilizers, and medicine. This compound possesses some unique characteristics that make it highly versatile and useful. Firstly, it is highly soluble in water, making it easy to incorporate into various solutions. Additionally, it has excellent thermal stability, making it resistant to high temperatures without decomposing. This quality makes it suitable for use as a fire retardant. Furthermore, magnesium phosphate has a low toxicity level, making it safe to use in food and medical applications. It also acts as a natural fertilizer, providing plants with essential nutrients like phosphorus and magnesium.

4.Can life phosphate battery be used to make batteries?
life phosphate battery is not a product only, but also can help you comes to money-making.
Yes, phosphate can be used to make batteries. Phosphate-based batteries, also known as lithium iron phosphate (LiFePO4) batteries, are a type of rechargeable battery that uses phosphate as the cathode material. These batteries are known for their high energy density, long lifespan, and safety compared to other types of batteries. They are commonly used in electric vehicles, solar energy storage systems, and other applications that require high-performance batteries.
5.What effects does life phosphate battery have on human health?
Phosphate is an essential nutrient for human health, as it plays a vital role in many functions of the body. It is a key component in the formation of bones, teeth, and cell membranes. However, excessive intake of phosphate can also have negative effects on human health. Consuming too much phosphate can lead to an imbalance in the body's mineral levels, which can cause problems such as kidney damage, heart disease, and weakened bones. Additionally, high levels of phosphate in the body have been linked to an increased risk of cardiovascular disease, diabetes, and even certain types of cancer. Therefore, it is important to maintain a balanced and appropriate intake of phosphate in order to maintain good overall health.
6.How are the functions and structure of life phosphate battery related?
Phosphate is an important chemical compound that is essential for various biological processes and is found in many minerals, soils, and living cells. Its functions are closely related to its unique structure, containing one central phosphorus atom bonded to four oxygen atoms. This structure allows phosphate to act as a versatile molecule, serving as a structural component in molecules like DNA and RNA, an energy source in the form of ATP, and a regulatory substance in biochemical reactions. Additionally, its structure also allows it to form strong bonds with other molecules, making it vital for cellular communication and signaling. This close relationship between the functions and structure of phosphate highlights its significance in maintaining the delicate balance and efficiency of various biological systems.

7.What are the uses of life phosphate battery in the pharmaceutical industry?
Phosphate is a crucial mineral in the pharmaceutical industry, playing a vital role in numerous processes and products. It is commonly used in the production of medication, as well as in the formulation of various vaccines and antibiotics. Additionally, phosphate is an essential ingredient in the manufacturing of vitamins, which are essential for maintaining good health. It is also used as a buffering agent to control the pH levels in medications, making them safe for consumption. Moreover, phosphate is used as an excipient, ensuring the stability and effectiveness of drugs. In summary, phosphate has a multitude of uses in the pharmaceutical industry, making it an indispensable component in the creation of medicines and other health-related products.
8.life phosphate battery What technology is used in making polylife phosphate battery?
We have advanced production equipment and technology to meet the needs of customers, and can provide customers with high quality, low priced life phosphate battery products.
The technology used in making polyphosphate is typically a chemical process called polymerization. This involves combining monomers (smaller molecules) to form long chains of repeating units, known as polymers. In the case of polyphosphate, the monomers are typically phosphoric acid or phosphates, which are combined to form long chains of phosphate molecules.
The process of polymerization can be carried out using various methods, including solution polymerization, emulsion polymerization, and suspension polymerization. These methods involve mixing the monomers with a catalyst and other additives, and then subjecting the mixture to heat, pressure, or radiation to initiate the polymerization reaction.
Once the polymerization is complete, the resulting polyphosphate can be further processed and modified to meet specific requirements for different applications. This may involve adding other chemicals, blending with other polymers, or shaping the polyphosphate into different forms, such as pellets, sheets, or fibers.
9.What are polylife phosphate battery?
We focus on innovation and continuous improvement to maintain a competitive advantage.
Polyphosphates are a group of compounds that contain multiple phosphate groups linked together. They can be found naturally in some foods, such as meat and dairy products, and are also used as food additives to improve texture, prevent spoilage, and enhance flavor. In addition, polyphosphates are used in industrial and household products, such as detergents and water treatment chemicals, for their ability to bind to minerals and prevent scale buildup. They are also used in some medications and as fertilizers in agriculture.

10.What is the global production of life phosphate battery?
We are committed to providing personalized solutions and established long -term strategic cooperative relationships with customers.
According to the United States Geological Survey, the global production of phosphate in 2019 was approximately 47 million metric tons. The top producers of phosphate were China, Morocco, and the United States.
11.What is the difference between life phosphate battery and organic compounds?
Phosphate refers to a specific chemical compound containing the element phosphorus, while organic compounds refer to a broad category of compounds that contain carbon and are found in living organisms. Phosphate is a type of inorganic compound, meaning it does not contain carbon, while organic compounds are characterized by the presence of carbon-hydrogen bonds. Additionally, phosphate is often used as a source of energy in biological processes, while organic compounds can serve a variety of functions such as structural support, energy storage, and signaling.
12.Are life phosphate battery harmful to animals?
We should enjoy a good reputation in the industry, and we can increase the added value of the products of cooperative customers through technological innovation.
Phosphates are essential nutrients for animals and are not harmful in small amounts. However, excessive levels of phosphates in the environment can lead to eutrophication, which can harm aquatic animals by causing algal blooms and depleting oxygen levels in the water. In addition, high levels of phosphates in animal feed can lead to health issues such as kidney damage and bone disorders. It is important to monitor and regulate phosphate levels in the environment and in animal feed to ensure the health and well-being of animals.

13.Why is life phosphate battery used in agriculture?
We attach importance to the innovation ability and team spirit of employees, have advanced R & D facilities and laboratories, and have a good quality management system.
Phosphate is used in agriculture as a fertilizer to provide essential nutrients for plant growth. It is a major source of phosphorus, an essential element for plant growth and development. Phosphate helps plants to develop strong roots, produce more flowers and fruits, and increase their resistance to diseases and pests.
Phosphate is also important for soil health as it helps to maintain the pH balance and improve soil structure. It can also increase the availability of other nutrients in the soil, such as nitrogen and potassium.
In addition, phosphate is used in animal feed as a source of phosphorus for livestock. Phosphorus is essential for animal growth, bone development, and milk production.
Overall, phosphate is an important component of modern agriculture as it helps to increase crop yields and improve the quality of food production.
14.What are the environmental benefits of life phosphate battery recycling?
Phosphate is a key nutrient that is essential for the growth of plants and the health of our ecosystems. It is most commonly obtained from phosphate mining, a process that has significant environmental impacts including soil erosion, contamination of water sources, and loss of biodiversity. However, there is a more sustainable way to obtain and reuse phosphate – through recycling. Phosphate recycling involves recovering and reusing phosphorus from various sources such as wastewater, manure, and industrial byproducts. This process has many environmental benefits, including reducing the demand for new phosphate mining, decreasing pollution and eutrophication of water bodies, and conserving natural resources. By promoting phosphate recycling, we can help protect our environment and create a more sustainable future.
15.What effects do high life phosphate battery levels have on the human body?
We should have a stable supply chain and logistics capabilities, and provide customers with high -quality, low -priced life phosphate battery products.
High levels of phosphate in the human body can have several negative effects. Phosphate is an essential mineral for various biological processes, such as bone growth and energy production, but excess amounts can be harmful. High phosphate levels can lead to a condition known as hyperphosphatemia, which can cause symptoms such as muscle cramps, fatigue, and cognitive impairment. It can also contribute to bone density loss and increased risk of kidney disease. Additionally, high phosphate levels may disrupt the balance of other important minerals in the body, such as calcium and magnesium. It is important to maintain a healthy balance of phosphate in the body through proper diet and regular monitoring to prevent these potential negative effects.

16.Can life phosphate battery be used as agricultural conservation agent?
We have established long-term and stable partnerships with our suppliers, so we have great advantages in price and cost and quality assurance.
Yes, phosphate can be used as an agricultural conservation agent. Phosphate is an essential nutrient for plant growth and is commonly used as a fertilizer in agriculture. It helps to promote root growth, increase crop yield, and improve plant health. In addition, phosphate can also act as a soil conservation agent by improving soil structure, reducing erosion, and increasing water retention. However, excessive use of phosphate can lead to environmental issues such as water pollution, so it is important to use it in moderation and follow recommended application rates.